The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w...The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.展开更多
Background:With the rapid development of modern emerging technologies,the ethical dilemmas and social controversies triggered by scientific and technological activities have become increasingly prominent.How to guide ...Background:With the rapid development of modern emerging technologies,the ethical dilemmas and social controversies triggered by scientific and technological activities have become increasingly prominent.How to guide technology for good and prevent and control technological risks has become an important issue of global concern.Research on science and technology ethics is dedicated to integrating ethical theories into governance practices and constructing ethical models that adapt to the development of the times.Methods:This article systematically reviews the six core approaches of scientific and technological ethics thought,including technological autonomy and political philosophy criticism,responsibility ethics and intergenerational obligations,technological intermediation and the integration of life and the world,ethical principles and normative frameworks,participatory governance and ethical practice innovation,as well as domain-specific ethical norms,thereby constructing an ethical analysis framework applicable to medical technology risks.And cross-analysis was conducted by taking medical events such as gene editing and xenotransplantation as examples.Results:Research shows that a single ethical approach has limitations in addressing complex medical ethical challenges,while the six approaches are complementary and synergistic.By criticizing technological autonomy,establishing a responsibility ethics orientation,setting the bottom line of ethical principles,promoting participatory governance,formulating domain norms,and continuously reflecting on the intermediary nature of technology,a multi-level and dynamically adaptive governance system for scientific and technological ethics can be constructed.Conclusion:The key to addressing contemporary medical ethics challenges lies in the comprehensive application of science and technology ethics theories and the integration of ethical considerations throughout the entire process of scientific and technological research and development.In the future,a governance framework that adapts to the development of new technologies should be established to promote cross-cultural and cross-disciplinary ethical dialogue and public participation,ensuring that scientific and technological innovation always serves the dignity of human life and overall well-being.展开更多
The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstru...The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.展开更多
Uneven distribution of minor metals and migration of isotopes in polymeric material (polypropylene) - originating under certain physical and chemical conditions-could possibly affect the stability and bio-compatibil...Uneven distribution of minor metals and migration of isotopes in polymeric material (polypropylene) - originating under certain physical and chemical conditions-could possibly affect the stability and bio-compatibility of such material. Unusually high levels of embedded surface metal isotopes from migration effects could affect studies such as tissue engineering and biospecific adhesion of cells to polymeric surfaces. There is, therefore, a general need to know the distribution of metal isotopes in such polymeric materials. We have developed an ultrasensitive technique for assessing the isotopic distribution in polymer matrices, and studying migration of metal isotopes. The technique uses laser ablation linked to an ICP-MS instrument. It is semi-quantitative and capable of high-resolution detection over a wide range of elemental levels. Polymers usually contain catalytic residues and other minor metal impurities. Some of the isotopes of these metals migrate to the surface, while others remain embedded deep in the polymeric product. Such unwanted metallic residues and isotopes could be a potential hazard, and ablative laser technology has the ability to study homogeneity of such distributions in the polymer matrix. The aim of this paper, therefore, is to explore the potential of our method for studying isotope migration using suitable polypropylene samples.展开更多
Depth profiling studies (laser ICP-MS) of ions (Cl-, Na+, Mg2+) in concrete-based material can be used to provide useful information on the migration paths of these ionic species. In particular, deterioration of concr...Depth profiling studies (laser ICP-MS) of ions (Cl-, Na+, Mg2+) in concrete-based material can be used to provide useful information on the migration paths of these ionic species. In particular, deterioration of concrete through infiltration of chloride could lead to costly corrosion problems with serious impact on the environment. Many modeling studies on concrete matrices depend on the tortuosity of these transport paths. Our work showed that dispersion paths of ionic species in concrete are intermittent and sporadic, suggesting that applications of simplifying assumptions in treatment of such data could lead to appreciable perturbations in related mathematical models. This paper examines the capability of using a high resolution ICP-MS laser ablation technique to track Cl– migration in concrete samples in the presence of other ions such as Na+ and Mg2+. Cationic migration in such materials is underexplored and data in this particular area could contribute to modeling studies. Concrete bricks (with and without surface coatings) were specially prepared in cubic configurations and allowed to saturate in a ponding medium (sea water). The study subsequently examined the distribution of Cl– , Na+ and Mg2+ with depth in protected (epoxy coated) and unprotected cored concrete slivers (5 mm diameter;2 mm thick) using an 80 μm- diameter laser beam coupled to an ICP-MS instrument. The laser (213 nm) was programmed to ablate a total depth of 50 μm at each point at 5-μm intervals. The results in unprotected samples indicated that chloride intensity showed a general decline with depth, suggesting that mobility of the chloride is a function of its interaction with the concrete matrix. In some cases ‘hotspots’ were observed at certain points indicating that transport of the intruding ion was limited. No significant mobility was observed in coated samples. The depth-profiling results for Na+ and Mg2+ were somewhat unexpected. Strong similarities in their spectra purported that the matrix was indifferent to charge and size of the ion. Our experimental data further showed that the matrix itself offers natural protection to the reinforced steel rebars by limiting chloride and metal diffusion at certain locations. Clearly, if the composition of these protective environments within the concrete could be simulated on a larger scale and introduced into the matrix it would offer scope for extended research in this area. Our work would be of definite interest to materials and environmental research;and mechanistic studies on aggregates.展开更多
目的 建立电感耦合等离子体质谱法(inductively coupled plasma-mass spectrometry,ICP-MS)测定注射用亚锡甲氧异腈中元素杂质的含量。方法 样品溶解后,采用ICP-MS半定量测定模式对注射用亚锡甲氧异腈中元素杂质进行初步筛查,结合国际...目的 建立电感耦合等离子体质谱法(inductively coupled plasma-mass spectrometry,ICP-MS)测定注射用亚锡甲氧异腈中元素杂质的含量。方法 样品溶解后,采用ICP-MS半定量测定模式对注射用亚锡甲氧异腈中元素杂质进行初步筛查,结合国际人用药品注册技术协调会(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use,ICH)Q3D元素杂质指导原则的要求,确定16种元素:锂(Li)、镁(Mg)、铝(Al)、硅(Si)、钾(K)、钒(V)、铁(Fe)、钴(Co)、镍(Ni)、锌(Zn)、砷(As)、镉(Cd)、铟(In)、锑(Sb)、汞(Hg)和铅(Pb)作为定量考察和控制的元素杂质研究对象。ICP-MS采集模式选择动能歧视模式进行定量方法研究,分别以钪(Sc)、锗(Ge)、钇(Y)、铋(Bi)作为内标,测定16种元素杂质的含量。结果 16种元素杂质在各自线性范围内响应与浓度相关性良好(r≥0.999 3);方法精密度(RSD≤3.53%)和重复性(RSD≤3.69%)均较好;各元素平均回收率为95.86%~105.64%(RSD≤5.06%,n=9),方法准确性良好。注射用亚锡甲氧异腈样品中16种元素均未超出限度,Mg、K、Zn 3种元素含量相对较高。结论 金属盐类制剂产品可能引入ICH Q3D原则要求以外的元素杂质。本研究建立的ICP-MS定量方法简便、快速,可用于注射用亚锡甲氧异腈中元素杂质的筛查、检测和风险评估。展开更多
文摘The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.
基金supported by the National Key Research and Development Program(Grant No.2024YFA0917200)the Projects of the Chinese Center for Disease Control and Prevention(Grant No.BB2110240093)World Medical History under the Education Innovation Plan of the University of Science and Technology of China(Grant No.2024YCHX07).
文摘Background:With the rapid development of modern emerging technologies,the ethical dilemmas and social controversies triggered by scientific and technological activities have become increasingly prominent.How to guide technology for good and prevent and control technological risks has become an important issue of global concern.Research on science and technology ethics is dedicated to integrating ethical theories into governance practices and constructing ethical models that adapt to the development of the times.Methods:This article systematically reviews the six core approaches of scientific and technological ethics thought,including technological autonomy and political philosophy criticism,responsibility ethics and intergenerational obligations,technological intermediation and the integration of life and the world,ethical principles and normative frameworks,participatory governance and ethical practice innovation,as well as domain-specific ethical norms,thereby constructing an ethical analysis framework applicable to medical technology risks.And cross-analysis was conducted by taking medical events such as gene editing and xenotransplantation as examples.Results:Research shows that a single ethical approach has limitations in addressing complex medical ethical challenges,while the six approaches are complementary and synergistic.By criticizing technological autonomy,establishing a responsibility ethics orientation,setting the bottom line of ethical principles,promoting participatory governance,formulating domain norms,and continuously reflecting on the intermediary nature of technology,a multi-level and dynamically adaptive governance system for scientific and technological ethics can be constructed.Conclusion:The key to addressing contemporary medical ethics challenges lies in the comprehensive application of science and technology ethics theories and the integration of ethical considerations throughout the entire process of scientific and technological research and development.In the future,a governance framework that adapts to the development of new technologies should be established to promote cross-cultural and cross-disciplinary ethical dialogue and public participation,ensuring that scientific and technological innovation always serves the dignity of human life and overall well-being.
基金supported by the National Natural Science Foundation of China(Nos.52105330,52175307)the Natural Science Foundation of Shandong Province,China(No.ZR2023JQ021)。
文摘The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.
文摘Uneven distribution of minor metals and migration of isotopes in polymeric material (polypropylene) - originating under certain physical and chemical conditions-could possibly affect the stability and bio-compatibility of such material. Unusually high levels of embedded surface metal isotopes from migration effects could affect studies such as tissue engineering and biospecific adhesion of cells to polymeric surfaces. There is, therefore, a general need to know the distribution of metal isotopes in such polymeric materials. We have developed an ultrasensitive technique for assessing the isotopic distribution in polymer matrices, and studying migration of metal isotopes. The technique uses laser ablation linked to an ICP-MS instrument. It is semi-quantitative and capable of high-resolution detection over a wide range of elemental levels. Polymers usually contain catalytic residues and other minor metal impurities. Some of the isotopes of these metals migrate to the surface, while others remain embedded deep in the polymeric product. Such unwanted metallic residues and isotopes could be a potential hazard, and ablative laser technology has the ability to study homogeneity of such distributions in the polymer matrix. The aim of this paper, therefore, is to explore the potential of our method for studying isotope migration using suitable polypropylene samples.
文摘Depth profiling studies (laser ICP-MS) of ions (Cl-, Na+, Mg2+) in concrete-based material can be used to provide useful information on the migration paths of these ionic species. In particular, deterioration of concrete through infiltration of chloride could lead to costly corrosion problems with serious impact on the environment. Many modeling studies on concrete matrices depend on the tortuosity of these transport paths. Our work showed that dispersion paths of ionic species in concrete are intermittent and sporadic, suggesting that applications of simplifying assumptions in treatment of such data could lead to appreciable perturbations in related mathematical models. This paper examines the capability of using a high resolution ICP-MS laser ablation technique to track Cl– migration in concrete samples in the presence of other ions such as Na+ and Mg2+. Cationic migration in such materials is underexplored and data in this particular area could contribute to modeling studies. Concrete bricks (with and without surface coatings) were specially prepared in cubic configurations and allowed to saturate in a ponding medium (sea water). The study subsequently examined the distribution of Cl– , Na+ and Mg2+ with depth in protected (epoxy coated) and unprotected cored concrete slivers (5 mm diameter;2 mm thick) using an 80 μm- diameter laser beam coupled to an ICP-MS instrument. The laser (213 nm) was programmed to ablate a total depth of 50 μm at each point at 5-μm intervals. The results in unprotected samples indicated that chloride intensity showed a general decline with depth, suggesting that mobility of the chloride is a function of its interaction with the concrete matrix. In some cases ‘hotspots’ were observed at certain points indicating that transport of the intruding ion was limited. No significant mobility was observed in coated samples. The depth-profiling results for Na+ and Mg2+ were somewhat unexpected. Strong similarities in their spectra purported that the matrix was indifferent to charge and size of the ion. Our experimental data further showed that the matrix itself offers natural protection to the reinforced steel rebars by limiting chloride and metal diffusion at certain locations. Clearly, if the composition of these protective environments within the concrete could be simulated on a larger scale and introduced into the matrix it would offer scope for extended research in this area. Our work would be of definite interest to materials and environmental research;and mechanistic studies on aggregates.
文摘目的 建立电感耦合等离子体质谱法(inductively coupled plasma-mass spectrometry,ICP-MS)测定注射用亚锡甲氧异腈中元素杂质的含量。方法 样品溶解后,采用ICP-MS半定量测定模式对注射用亚锡甲氧异腈中元素杂质进行初步筛查,结合国际人用药品注册技术协调会(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use,ICH)Q3D元素杂质指导原则的要求,确定16种元素:锂(Li)、镁(Mg)、铝(Al)、硅(Si)、钾(K)、钒(V)、铁(Fe)、钴(Co)、镍(Ni)、锌(Zn)、砷(As)、镉(Cd)、铟(In)、锑(Sb)、汞(Hg)和铅(Pb)作为定量考察和控制的元素杂质研究对象。ICP-MS采集模式选择动能歧视模式进行定量方法研究,分别以钪(Sc)、锗(Ge)、钇(Y)、铋(Bi)作为内标,测定16种元素杂质的含量。结果 16种元素杂质在各自线性范围内响应与浓度相关性良好(r≥0.999 3);方法精密度(RSD≤3.53%)和重复性(RSD≤3.69%)均较好;各元素平均回收率为95.86%~105.64%(RSD≤5.06%,n=9),方法准确性良好。注射用亚锡甲氧异腈样品中16种元素均未超出限度,Mg、K、Zn 3种元素含量相对较高。结论 金属盐类制剂产品可能引入ICH Q3D原则要求以外的元素杂质。本研究建立的ICP-MS定量方法简便、快速,可用于注射用亚锡甲氧异腈中元素杂质的筛查、检测和风险评估。