In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two red...In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.展开更多
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu...It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .展开更多
A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding cr...A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding criterion, associated normality flow rule for plastic rehololgy, and hydrostatic pressure. The numerical simulations for ice motion in an idealized rectangular basin were made using smoothed particle hydrodynamics (SPH) method, and compared with the analytical solution as well as those based on the modified viscous plastic(VP) model and static ice jam theory. These simulations show that the new VEP model can simulate ice dynamics accurately. The new constitutive model was further applied to simulate ice dynamics of the Bohai Sea and compared with the traditional VP, and modified VP models. The results of the VEP model are compared better with the satellite remote images, and the simulated ice conditions in the JZ20-2 oil platform area were more reasonable.展开更多
Anti-icing is crucial for numerous instruments and devices in low temperature circum- stance. One of the approaches in anti-icing is to reduce ice adhesion strength, seeking spontaneous de-icing processes by natural f...Anti-icing is crucial for numerous instruments and devices in low temperature circum- stance. One of the approaches in anti-icing is to reduce ice adhesion strength, seeking spontaneous de-icing processes by natural forces of gravity or by winds. In order to enable tai- lored surface icephobicity design, research requires a good theoretical understanding of the atomistic interacting mechanisms between water/ice molecules and their adhering substrates. Herein, this work focuses on using atomistic modeling and molecular dynamics simulation to build a nanosized ice-cube adhering onto silicon surface, with different contact modes of solid-solid and solid-liquid-solid patterns. This study provides atomistic models for probing nanoscale ice adhesion mechanics and theoretical platforms for explaining experimental results.展开更多
Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, th...Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter- ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.展开更多
The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in thi...The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.展开更多
The coupled ice- ocean model for the Bohai Sea is used for simulating the freezing, melting, and variation of ice cover and the heat bal- ance at the sea- ice, air- ice, and air- sea interfaces of the Bohai Sea during...The coupled ice- ocean model for the Bohai Sea is used for simulating the freezing, melting, and variation of ice cover and the heat bal- ance at the sea- ice, air- ice, and air- sea interfaces of the Bohai Sea during the entire winter in 1998 ̄1999 and 2000 ̄2001. The cou- pled model is forced by real time numerical weather prediction fields. The results show that the thermodynamic effects of atmosphere and ocean are very important for the evolvement of ice in the Bohai Sea, especially in the period of ice freezing and melting. Ocean heat flux plays a key role in the thermodynamic coupling. The simulation also presents the different thermodynamic features in the ice covered region and the marginal ice zone. Ice thickness, heat budget at the interface, and surface sea temperature, etc. between the two representative points are discussed.展开更多
Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process...Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency.展开更多
According to the earlier international studies on the coupled iceocean model and the hydrology, meteorology, and icefeatures in the Bohai Sea, a coupled iceocean model is developed based on the National Marine Environ...According to the earlier international studies on the coupled iceocean model and the hydrology, meteorology, and icefeatures in the Bohai Sea, a coupled iceocean model is developed based on the National Marine EnvironmentForecast Centers (NMEFC) numerical forecasting ice model of the Bohai Sea and the Princeton ocean model (POM).In the coupled model, the transfer of momentum and heat between ocean and ice is two-way, and the change of icethickness and concentration depends on heat budget not only at the surface and bottom of ice, but also at the surfaceof open water between ices. The dynamic and thermodynamic coupling process is expatiated emphatically. Somethermodynamic parameters are discussed as well.展开更多
In this paper, the first version of a new Arctic Ocean circulation and thermodynamic sea-ice model is presentedby the authors based on the framework of a twenty-layer World Oceanic general circulation model developed ...In this paper, the first version of a new Arctic Ocean circulation and thermodynamic sea-ice model is presentedby the authors based on the framework of a twenty-layer World Oceanic general circulation model developed byZhang et al. in 1994. The model's domain covers the Arctic Ocean and Greenland-Norwegian Seas with the horizontal resolution of 200 km×200 km on a stereographic projection plane. In vertical, the model uses the Eta-coordinate(Sigma modified to have quasi-horizontal coordinate surfaces) and has ten unevenly-spaced layers to cover the deepest water column of 3000 m. Two 150-year integrations of coupling the ocean circulation model with the sea-icemodel have been performed with seasonally cyclic surface boundary conditions. The only difference between the tWoexperiments is in the model's geography. Some preliminary analyses of the experimental results have been done focused on the following aspects: (1) surface layer temperature, salinity and current; (2) the' Atlantic Layer'; (3)sea-ice cover and its seasonal variation. In comparison with the available observational data, these results are acceptable with reasonable accuracy.展开更多
Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI). Attention was paid to the impact of albedo on snow and se...Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI). Attention was paid to the impact of albedo on snow and sea ice mass balance, effect of snow on total ice mass balance, and the model vertical resolution. The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project. The HIGHTSI control run reasonably reproduced the observed snow and ice thickness. A number of albedo schemes were incorporated into HIGHTSI to study the feedback processes between the albedo and snow and ice thickness. The snow thickness turned out to be an essential variable in the albedo parameterization. Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature. The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.展开更多
Radiative fluxes are of primary importance in the energy and mass balance of the sea-ice cover. Various parameterizations of the radiative fluxes are studied in a thermodynamic sea-ice model. Model outputs of the surf...Radiative fluxes are of primary importance in the energy and mass balance of the sea-ice cover. Various parameterizations of the radiative fluxes are studied in a thermodynamic sea-ice model. Model outputs of the surface radiative and heat fluxes and mass balance are compared with observations. The contribution of short-wave radiation is limited to a long part of winter. Therefore, simple schemes are often sufficient. Errors in estimations of the short-wave radiation are due mainly to cloud effects and occasionally to multi-reflection between surface and ice crystals in the air. The long-wave radiation plays an important role in the ice surface heat and mass balance during most part of a winter. The effect of clouds on the accuracy of the simple radiative schemes is critical, which needs further attention. In general, the accuracy of an ice model depends on that of the radiative fluxes.展开更多
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large u...Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.展开更多
A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed partic...A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.展开更多
Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind s...Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.展开更多
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric...Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.展开更多
The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic mo...The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic models almost consistently reproduced a decreasing trend of sea ice cover, the reported results show a large distribution. To evaluate the performance of models for simulating Arctic sea ice cover and its potential role in climate change, this study constructed a reasonable metric by synthesizing both linear trends and anomalies of sea ice. This study particularly focused on the Barents Sea and the Kara Sea, where sea ice anomalies have the highest potential to affect the atmosphere. The investigated models can be grouped into three categories according to their normalized skill scores. The strong contrast among the multi-model ensemble means of different groups demonstrates the robustness and rationality of this method. Potential factors that account for the different performances of climate models are further explored. The results show that model performance depends more on the ozone datasets that are prescribed by the model rather than on the chemical representation of ozone.展开更多
文摘In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.
文摘It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .
基金The authors would like to acknowledge the supports by the National Natural Science Foundation of China under contract No.40206004partly by the East-Asia and Pacific Program of US National Science Foundation under contract No.INT-9912246.
文摘A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding criterion, associated normality flow rule for plastic rehololgy, and hydrostatic pressure. The numerical simulations for ice motion in an idealized rectangular basin were made using smoothed particle hydrodynamics (SPH) method, and compared with the analytical solution as well as those based on the modified viscous plastic(VP) model and static ice jam theory. These simulations show that the new VEP model can simulate ice dynamics accurately. The new constitutive model was further applied to simulate ice dynamics of the Bohai Sea and compared with the traditional VP, and modified VP models. The results of the VEP model are compared better with the satellite remote images, and the simulated ice conditions in the JZ20-2 oil platform area were more reasonable.
基金the financial support from Statoil ASA (Norway) through the project of nanotechnology for anti-icing application, NTNU stjerneprogramthe Research Council of Norway through the FRINATEK project Towards Design of Super-Low Ice Adhesion Surfaces ( SLICE,250990 )
文摘Anti-icing is crucial for numerous instruments and devices in low temperature circum- stance. One of the approaches in anti-icing is to reduce ice adhesion strength, seeking spontaneous de-icing processes by natural forces of gravity or by winds. In order to enable tai- lored surface icephobicity design, research requires a good theoretical understanding of the atomistic interacting mechanisms between water/ice molecules and their adhering substrates. Herein, this work focuses on using atomistic modeling and molecular dynamics simulation to build a nanosized ice-cube adhering onto silicon surface, with different contact modes of solid-solid and solid-liquid-solid patterns. This study provides atomistic models for probing nanoscale ice adhesion mechanics and theoretical platforms for explaining experimental results.
文摘Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter- ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.
基金supported by the National Key R&D Program for Developing Basic Sciences (Grant Nos. 2016YFC1401401 and 2016YFC1401601)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC01000000)the National Natural Science Foundation of China (Grants Nos. 41576026, 41576025, 41776030, 41931183 and 41976026)
文摘The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.
基金supported by the National Natural Science Foundation of China under contract Nos 40233032 and 40376006the National High Technolo-gy Research and Development Program of China(“863")under contract Nos 2002AA639340 and 2001 AA631070the Principal Project under contract Nos 2001DIA50040 and 2001CB7l1006.
文摘The coupled ice- ocean model for the Bohai Sea is used for simulating the freezing, melting, and variation of ice cover and the heat bal- ance at the sea- ice, air- ice, and air- sea interfaces of the Bohai Sea during the entire winter in 1998 ̄1999 and 2000 ̄2001. The cou- pled model is forced by real time numerical weather prediction fields. The results show that the thermodynamic effects of atmosphere and ocean are very important for the evolvement of ice in the Bohai Sea, especially in the period of ice freezing and melting. Ocean heat flux plays a key role in the thermodynamic coupling. The simulation also presents the different thermodynamic features in the ice covered region and the marginal ice zone. Ice thickness, heat budget at the interface, and surface sea temperature, etc. between the two representative points are discussed.
基金supported by the National Natural Science Foundation of China(No.51706244)National Science and Technology Major Projects of China(No.2017-VIII-0003-0114)。
文摘Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency.
基金the National Natural Science Foundation of China under contract Nos40233032 , 40376006the National High Technology Research and Development Program(863) of China under contract Nos 2002AA639340 , 2001AA631070 the Principal Project under contract Nos2001DIA50040 , 2001CB711006.
文摘According to the earlier international studies on the coupled iceocean model and the hydrology, meteorology, and icefeatures in the Bohai Sea, a coupled iceocean model is developed based on the National Marine EnvironmentForecast Centers (NMEFC) numerical forecasting ice model of the Bohai Sea and the Princeton ocean model (POM).In the coupled model, the transfer of momentum and heat between ocean and ice is two-way, and the change of icethickness and concentration depends on heat budget not only at the surface and bottom of ice, but also at the surfaceof open water between ices. The dynamic and thermodynamic coupling process is expatiated emphatically. Somethermodynamic parameters are discussed as well.
文摘In this paper, the first version of a new Arctic Ocean circulation and thermodynamic sea-ice model is presentedby the authors based on the framework of a twenty-layer World Oceanic general circulation model developed byZhang et al. in 1994. The model's domain covers the Arctic Ocean and Greenland-Norwegian Seas with the horizontal resolution of 200 km×200 km on a stereographic projection plane. In vertical, the model uses the Eta-coordinate(Sigma modified to have quasi-horizontal coordinate surfaces) and has ten unevenly-spaced layers to cover the deepest water column of 3000 m. Two 150-year integrations of coupling the ocean circulation model with the sea-icemodel have been performed with seasonally cyclic surface boundary conditions. The only difference between the tWoexperiments is in the model's geography. Some preliminary analyses of the experimental results have been done focused on the following aspects: (1) surface layer temperature, salinity and current; (2) the' Atlantic Layer'; (3)sea-ice cover and its seasonal variation. In comparison with the available observational data, these results are acceptable with reasonable accuracy.
基金supported by the EC-funded project DAMOCLES (grant 18509)which is part of the Sixth Framework Program of DFG(grant LU 818/1-1)Natural Science Foundation of China(grants No.40233032,40376006).
文摘Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI). Attention was paid to the impact of albedo on snow and sea ice mass balance, effect of snow on total ice mass balance, and the model vertical resolution. The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project. The HIGHTSI control run reasonably reproduced the observed snow and ice thickness. A number of albedo schemes were incorporated into HIGHTSI to study the feedback processes between the albedo and snow and ice thickness. The snow thickness turned out to be an essential variable in the albedo parameterization. Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature. The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.
基金This study was a part of the Sino-Finnish long-term sea-ice research cooperationsupported by the National Natural Science Foundation of China under contract Nos 40233032 and 40376006.
文摘Radiative fluxes are of primary importance in the energy and mass balance of the sea-ice cover. Various parameterizations of the radiative fluxes are studied in a thermodynamic sea-ice model. Model outputs of the surface radiative and heat fluxes and mass balance are compared with observations. The contribution of short-wave radiation is limited to a long part of winter. Therefore, simple schemes are often sufficient. Errors in estimations of the short-wave radiation are due mainly to cloud effects and occasionally to multi-reflection between surface and ice crystals in the air. The long-wave radiation plays an important role in the ice surface heat and mass balance during most part of a winter. The effect of clouds on the accuracy of the simple radiative schemes is critical, which needs further attention. In general, the accuracy of an ice model depends on that of the radiative fluxes.
基金funded by the National Basic Research Program of China(Grant Nos.2010CB950102 and 2009CB421406)the Nansen Scientific Society(Norway)part of the SeaLev projects at the Centre of Climate Dynamics/Bjerknes Center in Bergen
文摘Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.
基金The study was supported by the National Natural Science Foundation of China under contract No.10772041the State 0ceamic Administration Key Laboratory for Ploar Science of China under contract No.KP 2007004.
文摘A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.
基金The National Natural Science Foundation of China under contract No.41571510the Fundamental Research Funds for the Central Universities of China under contract No.2014KJJCB02
文摘Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.
基金supported by the U.S.Department of Energy, Office of Science, Biological and Environmental Research, as part of the Earth System Modeling ProgramThe NASA Modeling, Analysis, and Prediction (MAP) Program by the Science Mission Directorate at NASA Headquarters supported the work contributed by Teppei J.YASUNARI and William K.M.LAU+2 种基金The NASA GEOS-5 simulation was implemented in the system for NASA Center for Climate Simulation (NCCS).M.G.Flanner was partially supported by NSF 1253154support from the China Scholarship FundThe Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830
文摘Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.
基金The National Natural Science Foundation of China under contract Nos 41576178 and 41630963the National Basic Research Program(973 program)of China under contract No.2015CB954004
文摘The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic models almost consistently reproduced a decreasing trend of sea ice cover, the reported results show a large distribution. To evaluate the performance of models for simulating Arctic sea ice cover and its potential role in climate change, this study constructed a reasonable metric by synthesizing both linear trends and anomalies of sea ice. This study particularly focused on the Barents Sea and the Kara Sea, where sea ice anomalies have the highest potential to affect the atmosphere. The investigated models can be grouped into three categories according to their normalized skill scores. The strong contrast among the multi-model ensemble means of different groups demonstrates the robustness and rationality of this method. Potential factors that account for the different performances of climate models are further explored. The results show that model performance depends more on the ozone datasets that are prescribed by the model rather than on the chemical representation of ozone.