Electromigration is a main challenge in the pursuit of power electronics, because physical limit to increase current density in power electronics is electromigration (EM), whereas much higher electrical current and vo...Electromigration is a main challenge in the pursuit of power electronics, because physical limit to increase current density in power electronics is electromigration (EM), whereas much higher electrical current and voltage are required for power electronics packaging. So the effect of EM is an important issue in applications where high current densities are used, such as in microelectronics and related structures (e.g., Power ICs). Since the structure size of integrated circuits (ICs) decreases and the practical significance of this effect increases, the result is EM failure. On the other hand, in the next generation power electronics technology electrical current density is expected to exceed 10<sup>7</sup> A/cm<sup>2</sup> which is another challenge. This review work has been carried out to identify the mechanism of EM damage in power electronics (e.g., pure metallization and solder joints) and also how to control this kind of damage.展开更多
目的探究了钴互连金属电子电镀工艺中的电镀成核机理,使用健那绿B(Janus Green B,JGB)对钴的电沉积进行进一步优化,并研究了JGB在改善电镀质量过程中的作用机理。方法采用电化学测试方法包括循环伏安、电流瞬态曲线,以及表征方法包括扫...目的探究了钴互连金属电子电镀工艺中的电镀成核机理,使用健那绿B(Janus Green B,JGB)对钴的电沉积进行进一步优化,并研究了JGB在改善电镀质量过程中的作用机理。方法采用电化学测试方法包括循环伏安、电流瞬态曲线,以及表征方法包括扫描电子显微镜(SEM)以及X射线衍射光谱(XRD),对钴在阻挡层Ti N上的电子电镀机理以及JGB作用下的成核特点及晶体特性等进行研究。结果测试得到了关于体系的电化学曲线以及薄膜微观表征图样,发现了JGB的成核特征,并在无金属阳离子的体系下进行对照实验,进而得出JGB对钴电沉积体系的影响机理。结论JGB促进了体系氢还原的进行,并改变了钴的成核特征,包括成核大小和数目,进而提升了电沉积质量,实现了更高的薄膜沉积覆盖率。JGB在体系中发生一系列电化学反应生成产物γ,产物γ由于带有不饱和N原子(显正电),会优先吸附到阴极的凸起处,γ分子剩余C—H—N结构可以抑制新的钴原子成核,从而增强电极表面还原沉积的平整度,使晶粒生长更加均匀。展开更多
文摘Electromigration is a main challenge in the pursuit of power electronics, because physical limit to increase current density in power electronics is electromigration (EM), whereas much higher electrical current and voltage are required for power electronics packaging. So the effect of EM is an important issue in applications where high current densities are used, such as in microelectronics and related structures (e.g., Power ICs). Since the structure size of integrated circuits (ICs) decreases and the practical significance of this effect increases, the result is EM failure. On the other hand, in the next generation power electronics technology electrical current density is expected to exceed 10<sup>7</sup> A/cm<sup>2</sup> which is another challenge. This review work has been carried out to identify the mechanism of EM damage in power electronics (e.g., pure metallization and solder joints) and also how to control this kind of damage.
文摘目的探究了钴互连金属电子电镀工艺中的电镀成核机理,使用健那绿B(Janus Green B,JGB)对钴的电沉积进行进一步优化,并研究了JGB在改善电镀质量过程中的作用机理。方法采用电化学测试方法包括循环伏安、电流瞬态曲线,以及表征方法包括扫描电子显微镜(SEM)以及X射线衍射光谱(XRD),对钴在阻挡层Ti N上的电子电镀机理以及JGB作用下的成核特点及晶体特性等进行研究。结果测试得到了关于体系的电化学曲线以及薄膜微观表征图样,发现了JGB的成核特征,并在无金属阳离子的体系下进行对照实验,进而得出JGB对钴电沉积体系的影响机理。结论JGB促进了体系氢还原的进行,并改变了钴的成核特征,包括成核大小和数目,进而提升了电沉积质量,实现了更高的薄膜沉积覆盖率。JGB在体系中发生一系列电化学反应生成产物γ,产物γ由于带有不饱和N原子(显正电),会优先吸附到阴极的凸起处,γ分子剩余C—H—N结构可以抑制新的钴原子成核,从而增强电极表面还原沉积的平整度,使晶粒生长更加均匀。