肺4D-CT在肺癌放射治疗中发挥着重要的作用,但肺4D-CT数据层间的分辨率低,导致每个相位3D数据的肺冠矢状面均为低分辨率图像。本研究提出一种基于运动估计的超分辨率重建技术,以提高3D数据的冠矢状面图像分辨率。首先,分析图像退化模型...肺4D-CT在肺癌放射治疗中发挥着重要的作用,但肺4D-CT数据层间的分辨率低,导致每个相位3D数据的肺冠矢状面均为低分辨率图像。本研究提出一种基于运动估计的超分辨率重建技术,以提高3D数据的冠矢状面图像分辨率。首先,分析图像退化模型;然后,采用基于完全搜索块匹配的运动估计法,估计出不同"帧"肺冠矢状面图像之间的运动场;最后,以此运动场为基础,采用迭代反投影法(IBP),重建高分辨率的肺部冠矢状面图像。使用一个公共可用的数据集来评价所提出的算法,该数据集由10组肺4D-CT数据组成,每组数据包含10个相位。在每组图像中,选取不同相位的冠矢状面图像进行实验。结果表明,与传统的插值方法(如最近邻插值、双线性插值法)相比,图像边缘宽度均显著降低(最近邻插值9.93±0.59,双线性插值8.04±0.69,新算法5.41±0.60,P<0.001);较双线性插值,图像平均梯度显著提高(5.41±0.59 vs 7.49±0.75,P<0.001),新方法不仅能获得视觉上清晰的图像,而且量化评价指标也有明显提高。主观和客观实验结果表明,所提出的新方法能有效提高肺4D-CT冠矢状面图像的分辨率。展开更多
In ATM networks, bursty sources can be described as the Interrupted Bernoulli Process(IBP). With the use of the thin process theory, the Probability Generating Function(PGF) of the IBP is obtained. An iterative algori...In ATM networks, bursty sources can be described as the Interrupted Bernoulli Process(IBP). With the use of the thin process theory, the Probability Generating Function(PGF) of the IBP is obtained. An iterative algorithm, which can be used to calculate the IBP probability distribution, is presented. The bursty source’s equivalent description is discussed. It is proposed that the leaky bucket output process can be approximately described as the IBP. The accuracy of the analytical results has been largely validated by means of the simulation approach. Moreover, how to improve its accuracy is discussed. The smoothing function of the leaky bucket algorithm is quantitatively analyzed.展开更多
文摘肺4D-CT在肺癌放射治疗中发挥着重要的作用,但肺4D-CT数据层间的分辨率低,导致每个相位3D数据的肺冠矢状面均为低分辨率图像。本研究提出一种基于运动估计的超分辨率重建技术,以提高3D数据的冠矢状面图像分辨率。首先,分析图像退化模型;然后,采用基于完全搜索块匹配的运动估计法,估计出不同"帧"肺冠矢状面图像之间的运动场;最后,以此运动场为基础,采用迭代反投影法(IBP),重建高分辨率的肺部冠矢状面图像。使用一个公共可用的数据集来评价所提出的算法,该数据集由10组肺4D-CT数据组成,每组数据包含10个相位。在每组图像中,选取不同相位的冠矢状面图像进行实验。结果表明,与传统的插值方法(如最近邻插值、双线性插值法)相比,图像边缘宽度均显著降低(最近邻插值9.93±0.59,双线性插值8.04±0.69,新算法5.41±0.60,P<0.001);较双线性插值,图像平均梯度显著提高(5.41±0.59 vs 7.49±0.75,P<0.001),新方法不仅能获得视觉上清晰的图像,而且量化评价指标也有明显提高。主观和客观实验结果表明,所提出的新方法能有效提高肺4D-CT冠矢状面图像的分辨率。
文摘In ATM networks, bursty sources can be described as the Interrupted Bernoulli Process(IBP). With the use of the thin process theory, the Probability Generating Function(PGF) of the IBP is obtained. An iterative algorithm, which can be used to calculate the IBP probability distribution, is presented. The bursty source’s equivalent description is discussed. It is proposed that the leaky bucket output process can be approximately described as the IBP. The accuracy of the analytical results has been largely validated by means of the simulation approach. Moreover, how to improve its accuracy is discussed. The smoothing function of the leaky bucket algorithm is quantitatively analyzed.