The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors po...The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors possess high changes in terms of size,shape,and amount,and hence the classification process acts as a more difficult research problem.This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods.The effectiveness of the suggested method depends on the coyote optimization algorithm,also known as the LOBO algorithm,which optimizes the weights of the deep-convolutional neural network classifier.The accuracy,sensitivity,and specificity indices,which are obtained to be 92.40%,94.15%,and 91.92%,respectively,are used to validate the effectiveness of the suggested method.The result suggests that the suggested strategy is superior for effectively classifying brain tumors.展开更多
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo...The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.展开更多
This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the...This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well.展开更多
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange ...Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.展开更多
A single-qubit quantum classifier(SQC)based on a gradient-free optimization(GFO)algorithm,named the GFO-based SQC,is proposed to overcome the effects of barren plateaus caused by quantum devices.Here,a rotation gate R...A single-qubit quantum classifier(SQC)based on a gradient-free optimization(GFO)algorithm,named the GFO-based SQC,is proposed to overcome the effects of barren plateaus caused by quantum devices.Here,a rotation gate R_(X)(φ)is applied on the single-qubit binary quantum classifier,and the training data and parameters are loaded intoφin the form of vector multiplication.The cost function is decreased by finding the value of each parameter that yields the minimum expectation value of measuring the quantum circuit.The algorithm is performed iteratively for all parameters one by one until the cost function satisfies the stop condition.The proposed GFO-based SQC is demonstrated for classification tasks in Iris and MNIST datasets and compared with the Adam-based SQC and the quantum support vector machine(QSVM).Furthermore,the performance of the GFO-based SQC is discussed when the rotation gate in the quantum device is under different types of noise.The simulation results show that the GFO-based SQC can reach a high accuracy in reduced time.Additionally,the proposed GFO algorithm can quickly complete the training process of the SQC.Importantly,the GFO-based SQC has a good performance in noisy environments.展开更多
Fraud is a major challenge facing telecommunication industry. A huge amount of revenues are lost to these fraudsters who have developed different techniques and strategies to defraud the service providers. For any ser...Fraud is a major challenge facing telecommunication industry. A huge amount of revenues are lost to these fraudsters who have developed different techniques and strategies to defraud the service providers. For any service provider to remain in the industry, the expected loss from the activities of these fraudsters should be highly minimized if not eliminated completely. But due to the nature of huge data and millions of subscribers involved, it becomes very difficult to detect this group of people. For this purpose, there is a need for optimal classifier and predictive probability model that can capture both the present and past history of the subscribers and classify them accordingly. In this paper, we have developed some predictive models and an optimal classifier. We simulated a sample of eighty (80) subscribers: their number of calls and the duration of the calls and categorized it into four sub-samples with sample size of twenty (20) each. We obtained the prior and posterior probabilities of the groups. We group these posterior probability distributions into two sample multivariate data with two variates each. We develop linear classifier that discriminates between the genuine subscribers and fraudulent subscribers. The optimal classifier (βA+B) has a posterior probability of 0.7368, and we classify the subscribers based on this optimal point. This paper focused on domestic subscribers and the parameters of interest were the number of calls per hour and the duration of the calls.展开更多
Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approx...Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem.However,most existing surrogate models have been designed based on regression techniques.This paper proposes a novel method,called CaDE,which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution(DE)optimization.The proposed method is separated into two stages.During the first optimization stage,the original DE is implemented as usual,but all individuals produced in this phase are stored as inputs of the training data.Based on design constraints verification,these individuals are labeled as“safe”or“unsafe”and their labels are saved as outputs of the training data.When collecting enough data,an AdaBoost model is trained to evaluate the safety state of structures.This model is then used in the second stage to preliminarily assess new individuals,and unpromising ones are rejected without checking design constraints.This method reduces unnecessary structural analyses,thereby shortens the optimization process.Five benchmark truss sizing optimization problems are solved using the proposed method to demonstrate its effectiveness.The obtained results show that the CaDE finds good optimal designs with less structural analyses in comparison with the original DE and four other DE variants.The reduction rate of five examples ranges from 18 to over 50%.Moreover,the proposed method is applied to a real-size transmission tower design problem to exhibit its applicability in practice.展开更多
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs)....For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms.展开更多
The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it c...The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%.展开更多
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ...Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.展开更多
Human action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence, and has attracted much attention. Here, we employ a low-cost optical sensor Kinect ...Human action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence, and has attracted much attention. Here, we employ a low-cost optical sensor Kinect to capture the action information of the human skeleton. We then propose a two-level hierarchical human action recognition model with self-selection classifiers via skeleton data. Especially different optimal classifiers are selected by probability voting mechanism and 10 times 10-fold cross validation at different coarse grained levels. Extensive simulations on a well-known open dataset and results demonstrate that our proposed method is efficient in human action recognition, achieving 94.19%the average recognition rate and 95.61% the best rate.展开更多
Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods....Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods.In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning.In this approach,Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes.We use multiple instance learning(MIL)to dynamically develop a deep anomalous ranking framework.This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections.We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results.The performance parameters such as accuracy,precision,recall,and F-score are considered to evaluate the proposed technique using the Python simulation tool.Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset.展开更多
The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service(DDoS)attacks.The curren...The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service(DDoS)attacks.The current growth rate in the number of Internet of Things(IoT)attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices.In this regard,the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices.We preprocessed two datasets,CICIDS and UNSW-NB15,to remove noise and missing values.The next step is to perform feature extraction using principal component analysis(PCA).Next,we utilize a globalized firefly optimization algorithm(GFOA)to identify and select vectors that indicate low-rate attacks.We finally switch to the Naïve Bayes(NB)classifier at the classification stage to compare it with the traditional extreme gradient boosting classifier in this attack-dimension classifying scenario,demonstrating the superiority of GFOA.The study concludes that the method by GFOA scored outstandingly,with accuracy,precision,and recall levels of 89.76%,84.7%,and 90.83%,respectively,and an F-measure of 91.11%against the established method that had an F-measure of 64.35%.展开更多
An air classifier is one of the main and effective devices in cement industry.In this study,a three-dimensional,steady and two-phase(solid-gas)computational fluid dynamics(CFD)simulation was performed to optimize the ...An air classifier is one of the main and effective devices in cement industry.In this study,a three-dimensional,steady and two-phase(solid-gas)computational fluid dynamics(CFD)simulation was performed to optimize the performance of this device in the Kerman Momtazan cement plant,Iran.After the validation of CFD results,the air flow field and air path lines between fixed blades were checked carefully and the non-uniformity in velocity distribution and the formation of vortex flows between the blades close to particle inlets were observed.The study tried to improve the device efficiency by changing the method of entering particles into the device,resulting in a reduction in air classifier electrical energy consumption(from 41 to 35(kW h)/t)and an increase in production rate(from 203 to 214 t/h).Additionally,the study investigated the effects of other modifiable operating conditions like rotary cage rotation speed,pressure difference,and inlet air temperature on the particle size distribution and classifier efficiency.The results showed that increasing the cage rotation speed decreased the product rate and the product particles mean diameter while increasing pressure difference or increasing temperature increased the product rate and the product particles mean diameter.It was concluded that these modifiable operating conditions can significantly affect the performance of the air classifier in the cement industry.展开更多
文摘The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors possess high changes in terms of size,shape,and amount,and hence the classification process acts as a more difficult research problem.This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods.The effectiveness of the suggested method depends on the coyote optimization algorithm,also known as the LOBO algorithm,which optimizes the weights of the deep-convolutional neural network classifier.The accuracy,sensitivity,and specificity indices,which are obtained to be 92.40%,94.15%,and 91.92%,respectively,are used to validate the effectiveness of the suggested method.The result suggests that the suggested strategy is superior for effectively classifying brain tumors.
文摘The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.
文摘This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well.
基金Supported by Gansu Province Natural Science Foundation(3ZS061-A25-045), and the“Qing Lan”Talent Engineering Funds of Lanazhou Jiaotong University(QL-06-19A)
文摘Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900)。
文摘A single-qubit quantum classifier(SQC)based on a gradient-free optimization(GFO)algorithm,named the GFO-based SQC,is proposed to overcome the effects of barren plateaus caused by quantum devices.Here,a rotation gate R_(X)(φ)is applied on the single-qubit binary quantum classifier,and the training data and parameters are loaded intoφin the form of vector multiplication.The cost function is decreased by finding the value of each parameter that yields the minimum expectation value of measuring the quantum circuit.The algorithm is performed iteratively for all parameters one by one until the cost function satisfies the stop condition.The proposed GFO-based SQC is demonstrated for classification tasks in Iris and MNIST datasets and compared with the Adam-based SQC and the quantum support vector machine(QSVM).Furthermore,the performance of the GFO-based SQC is discussed when the rotation gate in the quantum device is under different types of noise.The simulation results show that the GFO-based SQC can reach a high accuracy in reduced time.Additionally,the proposed GFO algorithm can quickly complete the training process of the SQC.Importantly,the GFO-based SQC has a good performance in noisy environments.
文摘Fraud is a major challenge facing telecommunication industry. A huge amount of revenues are lost to these fraudsters who have developed different techniques and strategies to defraud the service providers. For any service provider to remain in the industry, the expected loss from the activities of these fraudsters should be highly minimized if not eliminated completely. But due to the nature of huge data and millions of subscribers involved, it becomes very difficult to detect this group of people. For this purpose, there is a need for optimal classifier and predictive probability model that can capture both the present and past history of the subscribers and classify them accordingly. In this paper, we have developed some predictive models and an optimal classifier. We simulated a sample of eighty (80) subscribers: their number of calls and the duration of the calls and categorized it into four sub-samples with sample size of twenty (20) each. We obtained the prior and posterior probabilities of the groups. We group these posterior probability distributions into two sample multivariate data with two variates each. We develop linear classifier that discriminates between the genuine subscribers and fraudulent subscribers. The optimal classifier (βA+B) has a posterior probability of 0.7368, and we classify the subscribers based on this optimal point. This paper focused on domestic subscribers and the parameters of interest were the number of calls per hour and the duration of the calls.
基金funded by Hanoi University of Civil Engineering(HUCE)in Project Code 35-2021/KHXD-TD.
文摘Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem.However,most existing surrogate models have been designed based on regression techniques.This paper proposes a novel method,called CaDE,which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution(DE)optimization.The proposed method is separated into two stages.During the first optimization stage,the original DE is implemented as usual,but all individuals produced in this phase are stored as inputs of the training data.Based on design constraints verification,these individuals are labeled as“safe”or“unsafe”and their labels are saved as outputs of the training data.When collecting enough data,an AdaBoost model is trained to evaluate the safety state of structures.This model is then used in the second stage to preliminarily assess new individuals,and unpromising ones are rejected without checking design constraints.This method reduces unnecessary structural analyses,thereby shortens the optimization process.Five benchmark truss sizing optimization problems are solved using the proposed method to demonstrate its effectiveness.The obtained results show that the CaDE finds good optimal designs with less structural analyses in comparison with the original DE and four other DE variants.The reduction rate of five examples ranges from 18 to over 50%.Moreover,the proposed method is applied to a real-size transmission tower design problem to exhibit its applicability in practice.
文摘For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms.
文摘The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%.
文摘Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.
基金Supported by the National Nature Science Foundation of China under Grant Nos.11475003,61603003,and 11471093the Key Project of Cultivation of Leading Talents in Universities of Anhui Province under Grant No.gxfxZD2016174+2 种基金Funds of Integration of Cloud Computing and Big DataInnovation of Science and Technology of Ministry of Education of China under Grant No.2017A09116Anhui Provincial Department of Education Outstanding Top-Notch Talent-Funded Project under Grant No.gxbjZD26
文摘Human action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence, and has attracted much attention. Here, we employ a low-cost optical sensor Kinect to capture the action information of the human skeleton. We then propose a two-level hierarchical human action recognition model with self-selection classifiers via skeleton data. Especially different optimal classifiers are selected by probability voting mechanism and 10 times 10-fold cross validation at different coarse grained levels. Extensive simulations on a well-known open dataset and results demonstrate that our proposed method is efficient in human action recognition, achieving 94.19%the average recognition rate and 95.61% the best rate.
文摘Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods.In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning.In this approach,Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes.We use multiple instance learning(MIL)to dynamically develop a deep anomalous ranking framework.This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections.We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results.The performance parameters such as accuracy,precision,recall,and F-score are considered to evaluate the proposed technique using the Python simulation tool.Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset.
文摘The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service(DDoS)attacks.The current growth rate in the number of Internet of Things(IoT)attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices.In this regard,the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices.We preprocessed two datasets,CICIDS and UNSW-NB15,to remove noise and missing values.The next step is to perform feature extraction using principal component analysis(PCA).Next,we utilize a globalized firefly optimization algorithm(GFOA)to identify and select vectors that indicate low-rate attacks.We finally switch to the Naïve Bayes(NB)classifier at the classification stage to compare it with the traditional extreme gradient boosting classifier in this attack-dimension classifying scenario,demonstrating the superiority of GFOA.The study concludes that the method by GFOA scored outstandingly,with accuracy,precision,and recall levels of 89.76%,84.7%,and 90.83%,respectively,and an F-measure of 91.11%against the established method that had an F-measure of 64.35%.
文摘An air classifier is one of the main and effective devices in cement industry.In this study,a three-dimensional,steady and two-phase(solid-gas)computational fluid dynamics(CFD)simulation was performed to optimize the performance of this device in the Kerman Momtazan cement plant,Iran.After the validation of CFD results,the air flow field and air path lines between fixed blades were checked carefully and the non-uniformity in velocity distribution and the formation of vortex flows between the blades close to particle inlets were observed.The study tried to improve the device efficiency by changing the method of entering particles into the device,resulting in a reduction in air classifier electrical energy consumption(from 41 to 35(kW h)/t)and an increase in production rate(from 203 to 214 t/h).Additionally,the study investigated the effects of other modifiable operating conditions like rotary cage rotation speed,pressure difference,and inlet air temperature on the particle size distribution and classifier efficiency.The results showed that increasing the cage rotation speed decreased the product rate and the product particles mean diameter while increasing pressure difference or increasing temperature increased the product rate and the product particles mean diameter.It was concluded that these modifiable operating conditions can significantly affect the performance of the air classifier in the cement industry.