针对复杂输电环境下机械臂多目标点路径规划效率低、路径代价高的问题,提出了基于改进的人工势场引导的知情快速扩展随机树算法(improved artificial potential field-informed rapidly-exploring random trees star,IAPF-IRRT^(*))来...针对复杂输电环境下机械臂多目标点路径规划效率低、路径代价高的问题,提出了基于改进的人工势场引导的知情快速扩展随机树算法(improved artificial potential field-informed rapidly-exploring random trees star,IAPF-IRRT^(*))来提升路径规划的性能。首先引入长方体斥力场模型改进传统人工势场中球形斥力场模型,建立输电环境下复杂障碍物的斥力场。然后采用位置均匀分布的椭球域改进IAPF-IRRT*算法中的椭圆域,避免复杂输电环境下采样点出现局部冗余,提高搜索效率。最后引入三角寻优法优化路径中的冗余节点并结合三次样条插曲线对路径平滑处理。在三维简单、三维复杂和复杂输电环境这三组不同复杂程度的障碍物地图上进行验证,其结果表明:IAPF-IRRT*算法与标准RRT、RRT*算法相比,时间效率分别提升了44.8%~83.8%、68.3%~95.2%、26.5%~71.8%;路径代价分别降低了15.5%~35.0%、14.1%~35.3%、31.5%~43.5%;路径中的节点数量分别减少了75.6%~78.8%、75.0%~78.0%、70.4%~72.0%。展开更多
针对蚁群算法运动规划收敛慢且精度不佳的问题,提出一种改进势场蚁群(improved artificial potential field ant colony optimization, IAPF-ACO)算法。斥力计算模型引入目标调节因子解决势场寻优不可达且易陷入局部最优问题。蚁群算法...针对蚁群算法运动规划收敛慢且精度不佳的问题,提出一种改进势场蚁群(improved artificial potential field ant colony optimization, IAPF-ACO)算法。斥力计算模型引入目标调节因子解决势场寻优不可达且易陷入局部最优问题。蚁群算法计算框架加入改进势场模型,即启发信息函数中增加势场信息因子。三维障碍物空间仿真规划表明:IAPF-ACO算法在离散环境与聚集环境规划路径质量较优、规划结果较为稳定。在MATLAB搭建工业机器人仿真模型,关节空间内对规划路径点平滑处理,避障仿真结果表明,工业机器人末端位移是一条安全、平滑的运动轨迹。展开更多
The choice of the particle's distribution model and the consistency of the result are very important for FastSLAM.The improved auxiliary variable model with FastSLAM,and Stirling Interpolation which is used to app...The choice of the particle's distribution model and the consistency of the result are very important for FastSLAM.The improved auxiliary variable model with FastSLAM,and Stirling Interpolation which is used to approximate the nonlinear functions are provided.This approach improves the precision of the approximation for the nonlinear functions,conquers the drawback of the FastSLAM1.0 by using a model ignoring the measurement data,enhances the estimation consistency of the robot pose,and reduces the degradation speed of the particle in FastSLAM algorithm.Simulation results demonstrate the excellence of the proposed algorithm and give the noise parameter influence on the proposed algorithm.展开更多
文摘针对复杂输电环境下机械臂多目标点路径规划效率低、路径代价高的问题,提出了基于改进的人工势场引导的知情快速扩展随机树算法(improved artificial potential field-informed rapidly-exploring random trees star,IAPF-IRRT^(*))来提升路径规划的性能。首先引入长方体斥力场模型改进传统人工势场中球形斥力场模型,建立输电环境下复杂障碍物的斥力场。然后采用位置均匀分布的椭球域改进IAPF-IRRT*算法中的椭圆域,避免复杂输电环境下采样点出现局部冗余,提高搜索效率。最后引入三角寻优法优化路径中的冗余节点并结合三次样条插曲线对路径平滑处理。在三维简单、三维复杂和复杂输电环境这三组不同复杂程度的障碍物地图上进行验证,其结果表明:IAPF-IRRT*算法与标准RRT、RRT*算法相比,时间效率分别提升了44.8%~83.8%、68.3%~95.2%、26.5%~71.8%;路径代价分别降低了15.5%~35.0%、14.1%~35.3%、31.5%~43.5%;路径中的节点数量分别减少了75.6%~78.8%、75.0%~78.0%、70.4%~72.0%。
文摘针对蚁群算法运动规划收敛慢且精度不佳的问题,提出一种改进势场蚁群(improved artificial potential field ant colony optimization, IAPF-ACO)算法。斥力计算模型引入目标调节因子解决势场寻优不可达且易陷入局部最优问题。蚁群算法计算框架加入改进势场模型,即启发信息函数中增加势场信息因子。三维障碍物空间仿真规划表明:IAPF-ACO算法在离散环境与聚集环境规划路径质量较优、规划结果较为稳定。在MATLAB搭建工业机器人仿真模型,关节空间内对规划路径点平滑处理,避障仿真结果表明,工业机器人末端位移是一条安全、平滑的运动轨迹。
基金National High-Tech Research and Development Program of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province,China(No.2005C11001-02)
文摘The choice of the particle's distribution model and the consistency of the result are very important for FastSLAM.The improved auxiliary variable model with FastSLAM,and Stirling Interpolation which is used to approximate the nonlinear functions are provided.This approach improves the precision of the approximation for the nonlinear functions,conquers the drawback of the FastSLAM1.0 by using a model ignoring the measurement data,enhances the estimation consistency of the robot pose,and reduces the degradation speed of the particle in FastSLAM algorithm.Simulation results demonstrate the excellence of the proposed algorithm and give the noise parameter influence on the proposed algorithm.