The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the lAP, versions 1 and 2 of the Grid-point At...The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the lAP, versions 1 and 2 of the Grid-point Atmospheric Model of the IAP/LASG (GAMIL1 and GAMIL2), are evaluated in the context of mean state and interannual variation. Significant improvements are shown for GAMIL2 in comparison to GAMIL1. The simulated interannual variability of the EAWM, measured by the regional average of 1000 hPa meridional wind over East Asia, has evidently improved; the correlation coefficient with reanalysis data changes from 0.37 in GAMIL1 to 0.71 in GAMIL2. The associated interannual precipitation anomalies are also improved, in terms of both spatial pattern and magnitude. Analysis demonstrates that the improvements result from the better simulation of the El Nino-related Philippine Sea anticyclone (PSAC) in GAMIL2. The improved moist processes, including the stratiform condensation and evaporation in GAMIL2, lead to a reasonable atmospheric heating associated with El Nitro in the tropical Pacific, which further drives the PSAC as a Rossby- wave response.展开更多
Response of the Atlantic thermohaline circula- tion (THC) to global warming is examined by using the cli- mate system model developed at IAP/LASG. The evidence indicates that the gradually warming climate associated w...Response of the Atlantic thermohaline circula- tion (THC) to global warming is examined by using the cli- mate system model developed at IAP/LASG. The evidence indicates that the gradually warming climate associated with the increased atmospheric carbon dioxide leads to a warmer and fresher sea surface water at the high latitudes of the North Atlantic Ocean, which prevents the down-welling of the surface water. The succedent reduction of the pole-to- equator meridional potential density gradient finally results in the decrease of the THC in intensity. When the atmos- pheric carbon dioxide is doubled, the maximum value of the Atlantic THC decreases approximately by 8%. The associ- ated poleward oceanic heat transport also becomes weaker. This kind of THC weakening centralizes mainly in the northern part of the North Atlantic basin, indicating briefly a local scale adjustment rather than a loop oscillation with the whole Atlantic “conveyor belt” decelerating.展开更多
A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with...A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.展开更多
对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimila-tion),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate ...对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimila-tion),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)模拟的北印度洋经向环流及热输送的气候态。LICOM能抓住北印度洋大尺度环流的季节变化特征,模拟的年平均越赤道热输送为-0.24 PW(1 PW=1015W),较之以往的数值模式结果更接近观测和同化资料。与同化资料的差异主要体现在季节变化强度,北半球夏季在赤道以南偏弱0.5 PW,这与模式夏季的纬向风应力偏弱,热输送中的大项Ekman热输送模拟偏弱,从而模拟的经圈翻转环流较浅有关。展开更多
本文用CORE-IAF(Coordinated Ocean-ice Reference Experiments–Interannual Forcing)外强迫场分别强迫LICOM3(LASG/IAP Climate System Ocean Model Version 3)和POP2(Parallel Ocean Program version 2)两个海洋模式,并分析了这两个...本文用CORE-IAF(Coordinated Ocean-ice Reference Experiments–Interannual Forcing)外强迫场分别强迫LICOM3(LASG/IAP Climate System Ocean Model Version 3)和POP2(Parallel Ocean Program version 2)两个海洋模式,并分析了这两个模式中太平洋北赤道逆流(NECC)的模拟结果。我们发现LICOM3和POP2模拟的NECC强度均弱于实测,这和Sun et al.(2019)的研究结果一致,也进一步证明了海洋模式中NECC偏弱是CORE-IAF外强迫场造成的,海表风应力及对应的风应力旋度是海洋模式准确模拟NECC的最主要因子。同时,我们也分析了NECC的模拟在动力机制上的差别,这里的动力强迫项包括风应力项、平流项和余项。我们发现模式的外强迫场虽然相同,但是两个模式中各动力强迫项(风应力项、平流项和余项)对NECC模拟的影响并不完全相同。展开更多
The baseline performance of the latest version (version 2) of an intermediate resolution, stand-alone climate oceanic general circulation model, called LASG/IAP (State Key Laboratory of Numerical Modeling for Atmos...The baseline performance of the latest version (version 2) of an intermediate resolution, stand-alone climate oceanic general circulation model, called LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM), has been evaluated against the observation by using the main metrics from Griffies et al. in 2009. In general, the errors of LICOM2 in the water properties and in the circulation are comparable with the models of Coordinated Ocean-ice Reference Experiments (COREs). Some common biases are still evident in the present version, such as the cold bias in the eastern Facific cold tongue, the warm biases off the east coast of the basins~ the weak poleward heat transport in the Atlantic, and the relatively large biases in the Arctic Ocean. A unique systematic bias occurs in LICOM2 over the Southern Ocean, compared with CORE models. It seems that this bias may be related to the sea ice process around the Antarctic continent.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 41330423 and 41420104006]
文摘The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the lAP, versions 1 and 2 of the Grid-point Atmospheric Model of the IAP/LASG (GAMIL1 and GAMIL2), are evaluated in the context of mean state and interannual variation. Significant improvements are shown for GAMIL2 in comparison to GAMIL1. The simulated interannual variability of the EAWM, measured by the regional average of 1000 hPa meridional wind over East Asia, has evidently improved; the correlation coefficient with reanalysis data changes from 0.37 in GAMIL1 to 0.71 in GAMIL2. The associated interannual precipitation anomalies are also improved, in terms of both spatial pattern and magnitude. Analysis demonstrates that the improvements result from the better simulation of the El Nino-related Philippine Sea anticyclone (PSAC) in GAMIL2. The improved moist processes, including the stratiform condensation and evaporation in GAMIL2, lead to a reasonable atmospheric heating associated with El Nitro in the tropical Pacific, which further drives the PSAC as a Rossby- wave response.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.ZKCX2-SW-210)the National Natural Science Foundation of China(Grant Nos.40005004,40375029 and 40233031)the Major State Basic Research Development Program of China(973 Program)(Grant No.G200007850-2).
文摘Response of the Atlantic thermohaline circula- tion (THC) to global warming is examined by using the cli- mate system model developed at IAP/LASG. The evidence indicates that the gradually warming climate associated with the increased atmospheric carbon dioxide leads to a warmer and fresher sea surface water at the high latitudes of the North Atlantic Ocean, which prevents the down-welling of the surface water. The succedent reduction of the pole-to- equator meridional potential density gradient finally results in the decrease of the THC in intensity. When the atmos- pheric carbon dioxide is doubled, the maximum value of the Atlantic THC decreases approximately by 8%. The associ- ated poleward oceanic heat transport also becomes weaker. This kind of THC weakening centralizes mainly in the northern part of the North Atlantic basin, indicating briefly a local scale adjustment rather than a loop oscillation with the whole Atlantic “conveyor belt” decelerating.
基金supported by the Chinese Academy of Science Strategic Priority Research Program (Grant No. XDA05110303)"973" Program (Grant Nos. 2010CB950403,2012CB417203,and 2013CB955803)+1 种基金"863" Program(Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant Nos. 40925015,40875034,and 41023002)
文摘A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
文摘对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimila-tion),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)模拟的北印度洋经向环流及热输送的气候态。LICOM能抓住北印度洋大尺度环流的季节变化特征,模拟的年平均越赤道热输送为-0.24 PW(1 PW=1015W),较之以往的数值模式结果更接近观测和同化资料。与同化资料的差异主要体现在季节变化强度,北半球夏季在赤道以南偏弱0.5 PW,这与模式夏季的纬向风应力偏弱,热输送中的大项Ekman热输送模拟偏弱,从而模拟的经圈翻转环流较浅有关。
文摘本文用CORE-IAF(Coordinated Ocean-ice Reference Experiments–Interannual Forcing)外强迫场分别强迫LICOM3(LASG/IAP Climate System Ocean Model Version 3)和POP2(Parallel Ocean Program version 2)两个海洋模式,并分析了这两个模式中太平洋北赤道逆流(NECC)的模拟结果。我们发现LICOM3和POP2模拟的NECC强度均弱于实测,这和Sun et al.(2019)的研究结果一致,也进一步证明了海洋模式中NECC偏弱是CORE-IAF外强迫场造成的,海表风应力及对应的风应力旋度是海洋模式准确模拟NECC的最主要因子。同时,我们也分析了NECC的模拟在动力机制上的差别,这里的动力强迫项包括风应力项、平流项和余项。我们发现模式的外强迫场虽然相同,但是两个模式中各动力强迫项(风应力项、平流项和余项)对NECC模拟的影响并不完全相同。
基金Supported by the National Basic Research and Development (973) Program of China (2010CB951904 and 2007CB411806)National Natural Science Foundation of China (41075059 and 41023002)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05110302)
文摘The baseline performance of the latest version (version 2) of an intermediate resolution, stand-alone climate oceanic general circulation model, called LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM), has been evaluated against the observation by using the main metrics from Griffies et al. in 2009. In general, the errors of LICOM2 in the water properties and in the circulation are comparable with the models of Coordinated Ocean-ice Reference Experiments (COREs). Some common biases are still evident in the present version, such as the cold bias in the eastern Facific cold tongue, the warm biases off the east coast of the basins~ the weak poleward heat transport in the Atlantic, and the relatively large biases in the Arctic Ocean. A unique systematic bias occurs in LICOM2 over the Southern Ocean, compared with CORE models. It seems that this bias may be related to the sea ice process around the Antarctic continent.