Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances ar...Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challeng...Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challenges such as structural phase transitions,Na^(+)/vacancy ordering,and Jahn–Teller distortion effect,resulting in severe capacity decay and sluggish ion kinetics.We develop a novel Cu/Y dual-doping strategy that leads to the formation of"Na–Y"interlayer aggregates,which act as structural pillars within alkali metal layers,enhancing structural stability and disrupting the ordered arrangement of Na^(+)/vacancies.This disruption leads to a unique coexistence of ordered and disordered Na^(+)/vacancy states with near-zero strain,which significantly improves Na^(+)diffusion kinetics.This structural innovation not only mitigates the unfavorable P2–O2 phase transition but also facilitates rapid ion transport.As a result,the doped material demonstrates exceptional electrochemical performance,including an ultra-long cycle life of 3000 cycles at 10 C and an outstanding high-rate capability of~70 mAh g^(−1)at 50 C.The discovery of this novel interlayer pillar,along with its role in modulating Na^(+)/vacancy arrangements,provides a fresh perspective on engineering layered oxides.It opens up promising new pathways for the structural design of advanced cathode materials toward efficient,stable,and high-rate SIBs.展开更多
Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames w...Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.展开更多
TiNb_(2)O_(7)represents an up-and-coming anode material for fast-charging lithium-ion batteries,but its practicalities are severely impeded by slow transfer rates of ionic and electronic especially at the low-temperat...TiNb_(2)O_(7)represents an up-and-coming anode material for fast-charging lithium-ion batteries,but its practicalities are severely impeded by slow transfer rates of ionic and electronic especially at the low-temperature conditions.Herein,we introduce crystallographic engineering to enhance structure stability and promote Li+diffusion kinetics of TiNb_(2)O_(7)(TNO).The density functional theory computation reveals that Ti^(4+)is replaced by Sb^(5+)and Nb^(5+)in crystal lattices,which can reduce the Li+diffusion impediment and improve electronic conductivity.Synchrotron radiation X-ray 3D nano-computed tomography and in situ X-ray diffraction measurement confirm the introduction of Sb/Nb alleviates volume expansion during lithiation and delithiation processes,contributing to enhancing structure stability.Extended X-ray absorption fine structure spectra results verify that crystallographic engineering also increases short Nb-O bond length in TNO-Sb/Nb.Accordingly,the TNO-Sb/Nb anode delivers an outstanding capacity retention rate of 89.8%at 10 C after 700 cycles and excellent rate performance(140.4 mAh g^(−1) at 20 C).Even at−30℃,TNO-Sb/Nb anode delivers a capacity of 102.6 mAh g^(−1) with little capacity degeneration for 500 cycles.This work provides guidance for the design of fast-charging batteries at low-temperature condition.展开更多
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a...The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.展开更多
Profile of Prof.Ning-Li Wang Academician of the Chinese Academy of Engineering(CAE)Member of the International Academy of Ophthalmology Director,Ophthalmology Center,Beijing Tongren Hospital Dean,School of Ophthalmolo...Profile of Prof.Ning-Li Wang Academician of the Chinese Academy of Engineering(CAE)Member of the International Academy of Ophthalmology Director,Ophthalmology Center,Beijing Tongren Hospital Dean,School of Ophthalmology,Capital Medical University Director,National Engineering Research Center for Ophthalmic Diagnosis and Treatment National Distinguished Physician Member,Academic Advisory Committee.展开更多
Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease indu...Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orien...Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
基金funding support from General Research Fund[Project No.14300525]from the Research Grants Council(RGC)of Hong Kong SAR,Chinafunding support from Natural Science Foundation of China(NSFC)Young Scientists Fund(Project No.22305203)+2 种基金NSFC Projects Nos.22309123,22422303,22303011,22033002,92261112 and U21A20328support from the Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM)at City University of Hong Kongsupport from Young Collaborative Research Grant[Project No.C1003-23Y]support from RGC of Hong Kong SAR,China.
文摘Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province of China(No.2024C01056)。
文摘Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challenges such as structural phase transitions,Na^(+)/vacancy ordering,and Jahn–Teller distortion effect,resulting in severe capacity decay and sluggish ion kinetics.We develop a novel Cu/Y dual-doping strategy that leads to the formation of"Na–Y"interlayer aggregates,which act as structural pillars within alkali metal layers,enhancing structural stability and disrupting the ordered arrangement of Na^(+)/vacancies.This disruption leads to a unique coexistence of ordered and disordered Na^(+)/vacancy states with near-zero strain,which significantly improves Na^(+)diffusion kinetics.This structural innovation not only mitigates the unfavorable P2–O2 phase transition but also facilitates rapid ion transport.As a result,the doped material demonstrates exceptional electrochemical performance,including an ultra-long cycle life of 3000 cycles at 10 C and an outstanding high-rate capability of~70 mAh g^(−1)at 50 C.The discovery of this novel interlayer pillar,along with its role in modulating Na^(+)/vacancy arrangements,provides a fresh perspective on engineering layered oxides.It opens up promising new pathways for the structural design of advanced cathode materials toward efficient,stable,and high-rate SIBs.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.014000319/2018-00391.
文摘Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.
基金supported by the National Natural Science Foundation of China(22279026,2247090373)the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1401)+2 种基金the China Postdoctoral Science Foundation(2024M764198)the National Natural Science Foundation of China(22509044)the Fundamental Research Funds for the Central Universities(grant no.HIT.OCEF.2022017).
文摘TiNb_(2)O_(7)represents an up-and-coming anode material for fast-charging lithium-ion batteries,but its practicalities are severely impeded by slow transfer rates of ionic and electronic especially at the low-temperature conditions.Herein,we introduce crystallographic engineering to enhance structure stability and promote Li+diffusion kinetics of TiNb_(2)O_(7)(TNO).The density functional theory computation reveals that Ti^(4+)is replaced by Sb^(5+)and Nb^(5+)in crystal lattices,which can reduce the Li+diffusion impediment and improve electronic conductivity.Synchrotron radiation X-ray 3D nano-computed tomography and in situ X-ray diffraction measurement confirm the introduction of Sb/Nb alleviates volume expansion during lithiation and delithiation processes,contributing to enhancing structure stability.Extended X-ray absorption fine structure spectra results verify that crystallographic engineering also increases short Nb-O bond length in TNO-Sb/Nb.Accordingly,the TNO-Sb/Nb anode delivers an outstanding capacity retention rate of 89.8%at 10 C after 700 cycles and excellent rate performance(140.4 mAh g^(−1) at 20 C).Even at−30℃,TNO-Sb/Nb anode delivers a capacity of 102.6 mAh g^(−1) with little capacity degeneration for 500 cycles.This work provides guidance for the design of fast-charging batteries at low-temperature condition.
基金financially supported by the National Natural Science Foundation of China(No.52073214)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008).
文摘The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.
文摘Profile of Prof.Ning-Li Wang Academician of the Chinese Academy of Engineering(CAE)Member of the International Academy of Ophthalmology Director,Ophthalmology Center,Beijing Tongren Hospital Dean,School of Ophthalmology,Capital Medical University Director,National Engineering Research Center for Ophthalmic Diagnosis and Treatment National Distinguished Physician Member,Academic Advisory Committee.
基金supported by grants from the Jiangxi Provincial Natural Science Foundation,No.20242BAB26134(to XF)the National Natural Science Foundation of China,Nos.82060638(to TC),82060222(to XF),82460237(to XF)+1 种基金the Major Disciplines of Academic and Technical Leaders Project of Jiangxi Province,Nos.20194BCJ22032(to TC),20213BCJL22049(to XF)Science and Technology Plan of Jiangxi Health Planning Committee,No.202210390(to XF).
文摘Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金Under the auspices of National Natural Science Foundation of China(No.42293270)。
文摘Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.