There is significant debate concerning the tectonic characteristics and evolutionary understanding of the South China Block(SCB)during the Early Mesozoic.One of the key points of contention is the tectonic-magmatic ac...There is significant debate concerning the tectonic characteristics and evolutionary understanding of the South China Block(SCB)during the Early Mesozoic.One of the key points of contention is the tectonic-magmatic activity during the Triassic and its dynamic mechanisms.However,research on the detailed chronology and tectonic settings of granite plutons in key regions remains insuffi-cient,limiting the understanding of the tectonic-magmatic dynamic mechanisms in the interior of SCB during the Triassic.In this contribution,we present whole-rock major and trace elemental data,Sr-Nd isotope data,LA-ICP-MS zircon U-Pb age dating,and Lu-Hf isotope data for granites of Dashenshan pluton in the Xiangzhong,northwest part of SCB.The results indicate that the Dashenshan granite has an emplacement age of 208.4-212.5 Ma,characterized by high SiO_(2),Na_(2)O,and K_(2)O contents and low MgO and CaO.The Dashenshan granite is enriched in light rare-earth elements with a significant negative Eu anomaly(averageδEu=0.42).It is also enriched in Rb,K,and Th and shows pronounced depletion in Nb,Ta,and Ti,classifying it as peraluminous calc-alkaline granite,specifically of the I-type.The zircon ε_(Hf(t)) values range from−8.39 to−4.4,with an average of−5.82,and the Sr-Nd isotopes are relatively enriched[ε_(Nd)(t)=−9.31 to−6.8].Combining these geochemical characteristics,it is revealed that the Dashenshan granite was derived from the partial melting of middle to upper crustal metamorphic basement materials under medium-to low-temperature conditions,with possible minor contributions from mantle-derived materials.Furthermore,it underwent fractional crystallization,including plagioclase differentiation.By integrating the geochemical features and spatial distribution of Triassic granites in SCB,this study suggests that the regional tectonic evolution of SCB during the Triassic was primarily controlled by the collision of the SCB with the Indochina Block and the North China Block.In Xiangzhong,the tectonic setting transitioned from syn-collisional compression to post-collisional extension during the Late Triassic.The Dashenshan pluton formed in a post-collisional extensional setting,resulting from the decompression melting of middle-to-upper crustal rocks.The upwelling of the asthenosphere and upward heat transfer likely played a significant role in the formation of the Dashenshan granitic magma.展开更多
The South China Block is characterized by the large-scale emplacement of felsic magmas and giant ore deposits during the Yanshanian. We present zircon Hf isotopic compositions, whole-rock major and trace element compo...The South China Block is characterized by the large-scale emplacement of felsic magmas and giant ore deposits during the Yanshanian. We present zircon Hf isotopic compositions, whole-rock major and trace element compositions of the Fengshun complex, located in eastern Guangdong Province, South China. The Fengshun complex is a multi-stage magmatic intrusion. It is composed of two main units, i.e., the Mantoushan(MTS) syeno-monzogranites, alkali feldspar granites and the Hulutian(HLT) alkali feldspar granites. LA-ICPMS zircon dating shows that the complex emplaced in 166–161 and 139±2 Ma, respectively. Geochemically, the MTS granites show relatively various geochemical compositions with low REE contents(87.76×10-6–249.71×10-6), Rb/Sr ratios(1.19–58.93), pronounced Eu negative anomaly(0.01–0.37) and low Nb/Ta ratios(2.40–6.82). In contrast, the HLT granites exhibit relatively stable geochemical characteristics with high REE contents(147.35×10-6– 282.17×10-6), Rb/Sr ratios(2.05–10.30) and relatively high Nb/Ta ratios(4.45–13.00). The isotopic data of the MTS granites display relatively enriched values, with ISr varying from 0.708 2 to 0.709 7, εNd(t) from-7.8 to-6.9 and εHf(t) from-7.4 to-3.2, in comparison with those of the HLT which are ISr=0.703 05–0.704 77, εNd(t)=-5–-3.4 and εHf(t)=-0.7–1.8). The two-stage model ages of the MTS granites(T2DM(Nd)=1.51–1.59 Ga and T2DM(Hf)=1.26–1.48 Ga) are also higher than those of the HLT granites(T2DM(Nd)=1.21–1.34 Ga and T2DM(Hf)=0.96–1.10 Ga). Thus the MTS and HLT granites might originate from different sources. The former is more likely derived from partial melting of Meso-Proterozoic basement triggered by upwelling of asthenosphere and/or underplate of the basaltic magma and then extensive fractional crystallisation, similar to the genesis of Early Yanshanian granitoids of the EW-trending tectono-magmatism belt in the Nanling range. In comparison, the latter might have involved with asthenosphere component, similar to the Early Cretaceous granitoids of NE-NNE-trending granitoid-volcanic belt in coastal region, southeastern China. We propose that the MTS granites were mainly formed in Paleo-Tethyan post-orogenic extensional tectonic setting whereas the HLT granites were formed in the back-arc extensional tectonic setting. The period at 139 Ma represents the initial time of roll-back of the paleo-Pacific Plate in SE-trending.展开更多
Late Paleozoic to Early Mesozoic granites are widespread in the southern Qaidam Basin, northern margin of the eastern Kunlun orogenic belt. Their petrogenesis can provide us insights into the tectonic evolution and cr...Late Paleozoic to Early Mesozoic granites are widespread in the southern Qaidam Basin, northern margin of the eastern Kunlun orogenic belt. Their petrogenesis can provide us insights into the tectonic evolution and crustal growth process in the Qaidam Basin. This paper reports Permian–Triassic granites from the Kunbei area, southwestern Qaidam Basin. Detailed zircon LA-ICP MS U-Pb dating reveals that the granites from the four drilling cores(q404, q406, q1612-8, q1613-8) have identical ages of 251±3, 256±4, 247±2, and 251±6 Ma, respectively, these ages are identical with the Permian–Triassic granites from the eastern Qaidam Basin. Detailed geochemical analyses indicate that these granites display typical affinities of highly-fractionated I-type granites:(1) they have high SiO_2(up to 76.5 wt.%), Na_2O+K_2O(7.91 wt.% to 9.48 wt.%) contents and high FeO^T/MgO values of 4.7 to 9.3, suggesting significant fractional crystallization;(2) their low A/CNK values of 0.54 to 1.03, no normative Al-rich minerals, inconsistent with the per-aluminous S-type granites;(3) their low Ga(14.5 ppm to 20.7 ppm) and 10 000×Ga/Al(2.23 to 3.03, most of them 〈2.6) values are inconsistent with the A-type granites;(4) the high Rb(191 ppm to 406 ppm) contents and Rb/Sr(2.1 to 13.4) ratios, as well as the significant negative Eu anomalies(0.10 to 0.42) also indicate significant fractional crystallization of feldspars;(5) their low P_2O_5 contents(0.02 wt.% to 0.10 wt.%) suggest the limited solubility of phosphorus in primitive metaluminous melts. In combination with the geological background, we propose that the Permian–Triassic highly-fractionated I-type granites resulted from partial melting of intra-crustal mafic rocks, and the primitive I-type granitic melts underwent significant fractional crystallization of feldspars. The occurrence of highly-fractionated I-type granites in the southwestern Qaidam Basin suggests a Permian–Triassic active continental margin in the northern margin of the East Kunlun orogenic belt.展开更多
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter...The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.展开更多
The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we presen...The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U-Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U-Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma,which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calcalkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated ε_(Hf)(t) values of-12.7 to-3.7 and two-stage model ages of 1327-1974 Ma,respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong-Nujiang Ocean.展开更多
The tectonic evolution of the southwestern Yangtze Block during the Early Neoproterozoic period is still controversial because of the limited quantities of 1000–860 Ma magmatic rocks.In this study,our new LA-ICP-MS z...The tectonic evolution of the southwestern Yangtze Block during the Early Neoproterozoic period is still controversial because of the limited quantities of 1000–860 Ma magmatic rocks.In this study,our new LA-ICP-MS zircon U-Pb dating results demonstrate that the Yanbian granodiorites in the southwest Yangtze Block were emplaced at 894.6±7.4 Ma,representing the product of an 894 Ma magmatism.The Yanbian granodiorites are metaluminous to weak peraluminous with A/CNK values of 0.8–1.1,resembling Itype granitoids.They are characterized by right-inclined REE patterns with moderate to insignificant negative Eu anomalies(δEu=0.6–0.9).Their primitive mantle-normalized trace element patterns are characterized by depletion of Nb,Ta and Ti and weakly enrichment of Th.Considering the positive whole-rockεNd(t)(+5.8 to+6.8),we propose that these granodiorites originated from the partial melting of juvenile mafic lower crust.The Yanbian I-type granitoids have low Y and Nb contents similar to volcanic arc igneous rocks in the Y-Nb plot for tectonic discrimination.In conclusion,Early Neoproterozoic Yanbian granodiorites have generated in a compression setting in an active continental margin.Together with previous studies from the southwestern Yangtze Block,we suggest that the 894 Ma subduction-related Yanbian granodiorites represent the early stage of subduction at the southwestern margin of the Yangtze Block.展开更多
The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-I...The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopic compositions was carried out to define the timing, genesis and tectonic setting of the JM. Zircon LA-ICP-MS U-Pb ages have been obtained ranging from 210 to 215 Ma, rather than the Early Jurassic as previously thought. Fifteen granite samples contain hornblendes and show a negative correlation between POand SiO, indicating that the JM is an I-type granite. All the granites are enriched in LREE relative to HREE, with negative Eu anomalies(Eu/Eu*=0.56-0.81), and have similar trace elements patterns, with depletion of Ba, Nb, Sr and P. These suggest that the JM was fractionated, and this is also proved by the characteristic of negative correlations between oxide elements(TiO, MgO, FeOt, MnO, CaO) and SiO. Almost all ε(t) values of the granites are between-10.3 and-5.8, implying that the JM has a crustal source intimately related with the South Qiangtang Block(SQB), except for one(+10.2), showing a minor contribution from mantle source.Moreover, relatively low NaO/KO ratios(0.42-0.93) and high A/CNK values(0.91-1.50) reflect that the JM was predominately derived from the medium-high potassium basaltic crust, interacted with greywacke. Our new geochemical data and geochronological results imply that the Late Triassic magmas were generated in a post-collisional tectonic setting, probably caused by slab break-off of the Longmu Co-Shuanghu Tethyan Ocean(LSTO). This mechanism caused the asthenosphere upwelling, formed extension setting, offered an enormous amount of heat, and provided favorable conditions for emplacement of voluminous felsic magmas. Furthermore, the LSTO could be completely closed during the Middle Triassic, succeed by continental collision and later the slab broke off in the Late Triassic.展开更多
Cretaceous magmatism is widely distributed on both sides of the Bangong-Nujiang suture zone(BNSZ).These rocks record the subduction to closure history of the Bangong-Nujiang Tethys Ocean(BNO)and the collisional histor...Cretaceous magmatism is widely distributed on both sides of the Bangong-Nujiang suture zone(BNSZ).These rocks record the subduction to closure history of the Bangong-Nujiang Tethys Ocean(BNO)and the collisional history between the Lhasa(LS)and Qiangtang(QT)terranes.The Xiabie Co granite in Nyima County,which located on the southern margin of the QT terrane,Tibet.In this study,whole-rock geochemistry;Rb-Sr,Sm-Nd,and Pb isotopes;and laser ablation inductively coupled mass spectrometry(LA-ICP-MS)zircon U-Pb ages and Lu-Hf isotopes of the Xiabie Co granite in the Nyima area have been studied to constrain its petrogenesis and tectonic setting.Our study can help explain the tectonic evolution of the BNSZ and crust-mantle interaction.Zircon U-Pb dating indicates that the granite was emplaced at ca.120 Ma.The granite contains a small amount of hornblende and has high silicon(SiO2=73.97-78.03 wt%),potassium(K_(2)O=4.75-6.53 wt%),and total alkali(K_(2)O+Na_(2)O=7.98-8.98 wt%)contents;low calcium content(CaO=2.33-4.11 wt%);and variable A/CNK(1.00-1.18)and A/NK(1.09-1.22)values.The P_(2)O_(5) content of the granite negatively correlated with the SiO_(2)content.Thus,the Xiabie Co granite is a weakly peraluminous I-type granite belonging to the high-K calcalkaline to Shoshone series.It is enriched in light rare earth elements(LREEs)and relatively depleted in heavy rare earth elements(HREEs),with LREE/HREE ratios of 8.03-16.40 and La_(N)/Yb_(N) ratios of 10.2-27.1.Samples show right-leaning chondrite-normalized rare earth element patterns with pronounced negative Eu anomalies(Eu/Eu*=0.67-0.76).The primitive-mantle-normalized trace element spider diagrams of the samples are right-leaning zigzag curves,showing relative enrichment in large-ion lithophile elements(LILEs,e.g.,Rb,Th,U,and K)and depletion in high-field-strength elements(HFSEs,e.g.,Nb,P,Ti,and Yb)and displaying striking Sr and Ba negative anomalies.The graniteεHf(t)values were positive(2.9-9.9),whereas the whole-rockεNd(t)values were negative(−2.841 to−2.33).The calculated(^(87)Sr/^(86)Sr)t,(^(206)Pb/^(204)Pb)t,(^(207)Pb/^(204)Pb)t,and(^(208)Pb/^(204)Pb)t values are 0.7014-0.7057(0.7044 on average),18.422-18.851(18.670 on average),15.625-15.642(15.633 on average),and 38.332-38.681(39.571 on average),respectively.On the basis of the aforementioned data,we propose that the Xiabie Co granite was derived from a primitive magma that originated from partial melting of juvenile lower crust with the addition of mantle materials.In addition,strong fractional crystallization occurred during the rock-forming process.Given the geodynamic setting,our new data,together with previously reported achievements,imply that the Xiabie Co granite was formed during the LS-QT collision.展开更多
1 Introduction The western Kunlun orogen,located in the northwest Tibet Plateau,and is a conjunction between the Pan-Asian and the Tethys tectonic domains.From north to south,the Western Kunlun orogen includes four
BACKGROUND Robotic resection using the natural orifice specimen extraction surgery I-type F method(R-NOSES I-F)is a novel minimally invasive surgical strategy for the treatment of lower rectal cancer.However,the curre...BACKGROUND Robotic resection using the natural orifice specimen extraction surgery I-type F method(R-NOSES I-F)is a novel minimally invasive surgical strategy for the treatment of lower rectal cancer.However,the current literature on this method is limited to case reports,and further investigation into its safety and feasibility is warranted.AIM To evaluate the safety and feasibility of R-NOSES I-F for the treatment of low rectal cancer.METHODS From September 2018 to February 2022,206 patients diagnosed with low rectal cancer at First Affiliated Hospital of Nanchang University were included in this retrospective analysis.Of these patients,22 underwent R-NOSES I-F surgery(RNOSES I-F group)and 76 underwent conventional robotic-assisted low rectal cancer resection(RLRC group).Clinicopathological data of all patients were collected and analyzed.Postoperative outcomes and prognoses were compared between the two groups.Statistical analysis was performed using SPSS software.RESULTS Patients in the R-NOSES I-F group had a significantly lower visual analog score for pain on postoperative day 1(1.7±0.7 vs 2.2±0.6,P=0.003)and shorter postoperative anal venting time(2.7±0.6 vs 3.5±0.7,P<0.001)than those in the RLRC group.There were no significant differences between the two groups in terms of sex,age,body mass index,tumor size,TNM stage,operative time,intrao-perative bleeding,postoperative complications,or inflammatory response(P>0.05).Postoperative anal and urinary functions,as assessed by Wexner,low anterior resection syndrome,and International Prostate Symptom Scale scores,were similar in both groups(P>0.05).Long-term follow-up revealed no significant differences in the rates of local recurrence and distant metastasis between the two groups(P>0.05).CONCLUSION R-NOSES I-F is a safe and effective minimally invasive procedure for the treatment of lower rectal cancer.It improves pain relief,promotes gastrointestinal function recovery,and helps avoid incision-related complications.展开更多
The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is ...The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB,and their place within the Rodinia supercontinent.However,to date,the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained,with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block.Here,we present a systematic study combining U-Pb geochronology,whole-rock geochemistry,and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block.The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma.These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity.The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs),but they are depleted in high field strength elements(HFSEs);these characteristics are similar to those of typical subduction-related magmatism.All samples show initial(^(87)Sr/^(86)Sr)(t)ratios between 0.705136 and 0.706745.Values forεNd(t)in the granitic gneisses are in the range from-5.7 to-1.2,which correspond to Nd model ages of 2.0-1.7 Ga,indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths.The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source,which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material.The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.展开更多
The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper ...The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%–76.8%), K2O (4.4%–5.7%), and low P2O5 (0.05%–0.12%). These samples also have A/CNK values of 1.00–1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high ? Nd(t) values (?10.9–?7.6) and low initial 87Sr/86Sr ratios (0.7120–0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon ? Hf(t) values (?12.8–?2.9), yielding ancient zircon Hf crustal model ages of 1.4–2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789–821 °C) indicate that mantle-derived materials likely played a role in the generation of the Zayu pluton. We propose that the Zayu pluton was most likely generated in a setting associated with southward subduction of the Bangong-Nujiang ocean floor, where mantle wedge-derived magmas may have provided the heat and material for the anatexis of ancient crust of the Lhasa micro-continent, resulted in hybrid melts (i.e., mantle-derived basaltic magmas + crust-derived felsic magmas). Such hybrid melts with subsequent fractional crystallization are responsible for the highly evolved Zayu pluton (crust thickening is not a prerequisite).展开更多
Permian intrusions are widespread in the Middle and Southern Tien-Shan,with fewer occurrences in the Northern Tien-Shan.Notably,many of these intrusions are spatially associated with a variety of ore deposits,indicati...Permian intrusions are widespread in the Middle and Southern Tien-Shan,with fewer occurrences in the Northern Tien-Shan.Notably,many of these intrusions are spatially associated with a variety of ore deposits,indicating a significant link between magmatic activity and mineralization processes in these areas.We studied granite samples recently recovered from drilling in the Kumtor gold field to evaluate their potential relationships with gold mineralization.The major and trace element geochemistry,zircon U-Pb age and Hf isotope data for this so-called Kumtor granite are reported.The Kumtor granite is metaluminous to peraluminous and belongs to the high-K and calc-alkaline series with I-type geochemical characteristics.The relatively high K_(2)O and Na_(2)O concentrations and low high field strength elements(HFSE)and heavy rare earth elements(HREE),the presence of biotite within these I-type granites,together with their low zircon saturation temperatures(731-779℃),suggest that they were likely derived from a hydrous source formed by dehydration melting of mica-bearing,medium-to high-K metabasaltic rocks.The zircon U-Pb dating results indicate that the Kumtor granite intruded at 293±1.7 Ma,which is consistent with the age range of other Middle Tien-Shan granitoids.The zircon Hf isotopic composition isε_(Hf)(t)=-7.56 to-5.05,indicating an ancient(1.39 to 1.52 Ga)crustal origin.Petrographical,geochemical and geochronological data indicate that the Kumtor granite is similar to leucogranites of the Terekty Complex.These results indicate that the Kumtor granite was emplaced in the Early Permian in a postcollision setting and may have temporal and genetic relationships with gold mineralization.展开更多
基金supported financially by the Research Foundation of the Department of Natural Resources of Hunan Province(20230135DZ)the Provincial Natural Science Foundation of Hunan(2024JJ7080)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(23C0320)Hunan Provincial College Student Innovation and Entrepreneurship Training Project(S202311527014).
文摘There is significant debate concerning the tectonic characteristics and evolutionary understanding of the South China Block(SCB)during the Early Mesozoic.One of the key points of contention is the tectonic-magmatic activity during the Triassic and its dynamic mechanisms.However,research on the detailed chronology and tectonic settings of granite plutons in key regions remains insuffi-cient,limiting the understanding of the tectonic-magmatic dynamic mechanisms in the interior of SCB during the Triassic.In this contribution,we present whole-rock major and trace elemental data,Sr-Nd isotope data,LA-ICP-MS zircon U-Pb age dating,and Lu-Hf isotope data for granites of Dashenshan pluton in the Xiangzhong,northwest part of SCB.The results indicate that the Dashenshan granite has an emplacement age of 208.4-212.5 Ma,characterized by high SiO_(2),Na_(2)O,and K_(2)O contents and low MgO and CaO.The Dashenshan granite is enriched in light rare-earth elements with a significant negative Eu anomaly(averageδEu=0.42).It is also enriched in Rb,K,and Th and shows pronounced depletion in Nb,Ta,and Ti,classifying it as peraluminous calc-alkaline granite,specifically of the I-type.The zircon ε_(Hf(t)) values range from−8.39 to−4.4,with an average of−5.82,and the Sr-Nd isotopes are relatively enriched[ε_(Nd)(t)=−9.31 to−6.8].Combining these geochemical characteristics,it is revealed that the Dashenshan granite was derived from the partial melting of middle to upper crustal metamorphic basement materials under medium-to low-temperature conditions,with possible minor contributions from mantle-derived materials.Furthermore,it underwent fractional crystallization,including plagioclase differentiation.By integrating the geochemical features and spatial distribution of Triassic granites in SCB,this study suggests that the regional tectonic evolution of SCB during the Triassic was primarily controlled by the collision of the SCB with the Indochina Block and the North China Block.In Xiangzhong,the tectonic setting transitioned from syn-collisional compression to post-collisional extension during the Late Triassic.The Dashenshan pluton formed in a post-collisional extensional setting,resulting from the decompression melting of middle-to-upper crustal rocks.The upwelling of the asthenosphere and upward heat transfer likely played a significant role in the formation of the Dashenshan granitic magma.
基金financially supported by the China Geological Survey(No.1212011220014)the Chinese National Natural Science Foundation(No.41172063)
文摘The South China Block is characterized by the large-scale emplacement of felsic magmas and giant ore deposits during the Yanshanian. We present zircon Hf isotopic compositions, whole-rock major and trace element compositions of the Fengshun complex, located in eastern Guangdong Province, South China. The Fengshun complex is a multi-stage magmatic intrusion. It is composed of two main units, i.e., the Mantoushan(MTS) syeno-monzogranites, alkali feldspar granites and the Hulutian(HLT) alkali feldspar granites. LA-ICPMS zircon dating shows that the complex emplaced in 166–161 and 139±2 Ma, respectively. Geochemically, the MTS granites show relatively various geochemical compositions with low REE contents(87.76×10-6–249.71×10-6), Rb/Sr ratios(1.19–58.93), pronounced Eu negative anomaly(0.01–0.37) and low Nb/Ta ratios(2.40–6.82). In contrast, the HLT granites exhibit relatively stable geochemical characteristics with high REE contents(147.35×10-6– 282.17×10-6), Rb/Sr ratios(2.05–10.30) and relatively high Nb/Ta ratios(4.45–13.00). The isotopic data of the MTS granites display relatively enriched values, with ISr varying from 0.708 2 to 0.709 7, εNd(t) from-7.8 to-6.9 and εHf(t) from-7.4 to-3.2, in comparison with those of the HLT which are ISr=0.703 05–0.704 77, εNd(t)=-5–-3.4 and εHf(t)=-0.7–1.8). The two-stage model ages of the MTS granites(T2DM(Nd)=1.51–1.59 Ga and T2DM(Hf)=1.26–1.48 Ga) are also higher than those of the HLT granites(T2DM(Nd)=1.21–1.34 Ga and T2DM(Hf)=0.96–1.10 Ga). Thus the MTS and HLT granites might originate from different sources. The former is more likely derived from partial melting of Meso-Proterozoic basement triggered by upwelling of asthenosphere and/or underplate of the basaltic magma and then extensive fractional crystallisation, similar to the genesis of Early Yanshanian granitoids of the EW-trending tectono-magmatism belt in the Nanling range. In comparison, the latter might have involved with asthenosphere component, similar to the Early Cretaceous granitoids of NE-NNE-trending granitoid-volcanic belt in coastal region, southeastern China. We propose that the MTS granites were mainly formed in Paleo-Tethyan post-orogenic extensional tectonic setting whereas the HLT granites were formed in the back-arc extensional tectonic setting. The period at 139 Ma represents the initial time of roll-back of the paleo-Pacific Plate in SE-trending.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China (No.41102037)the foundation for the author of National Excellent Doctoral Dissertation of China (No.201324)+1 种基金the Foundation of Young Excellent Scientists of the Shaanxi Province (No.2014KJXX-60)the MOST Special Fund from the State Key Laboratory of Continental Dynamics
文摘Late Paleozoic to Early Mesozoic granites are widespread in the southern Qaidam Basin, northern margin of the eastern Kunlun orogenic belt. Their petrogenesis can provide us insights into the tectonic evolution and crustal growth process in the Qaidam Basin. This paper reports Permian–Triassic granites from the Kunbei area, southwestern Qaidam Basin. Detailed zircon LA-ICP MS U-Pb dating reveals that the granites from the four drilling cores(q404, q406, q1612-8, q1613-8) have identical ages of 251±3, 256±4, 247±2, and 251±6 Ma, respectively, these ages are identical with the Permian–Triassic granites from the eastern Qaidam Basin. Detailed geochemical analyses indicate that these granites display typical affinities of highly-fractionated I-type granites:(1) they have high SiO_2(up to 76.5 wt.%), Na_2O+K_2O(7.91 wt.% to 9.48 wt.%) contents and high FeO^T/MgO values of 4.7 to 9.3, suggesting significant fractional crystallization;(2) their low A/CNK values of 0.54 to 1.03, no normative Al-rich minerals, inconsistent with the per-aluminous S-type granites;(3) their low Ga(14.5 ppm to 20.7 ppm) and 10 000×Ga/Al(2.23 to 3.03, most of them 〈2.6) values are inconsistent with the A-type granites;(4) the high Rb(191 ppm to 406 ppm) contents and Rb/Sr(2.1 to 13.4) ratios, as well as the significant negative Eu anomalies(0.10 to 0.42) also indicate significant fractional crystallization of feldspars;(5) their low P_2O_5 contents(0.02 wt.% to 0.10 wt.%) suggest the limited solubility of phosphorus in primitive metaluminous melts. In combination with the geological background, we propose that the Permian–Triassic highly-fractionated I-type granites resulted from partial melting of intra-crustal mafic rocks, and the primitive I-type granitic melts underwent significant fractional crystallization of feldspars. The occurrence of highly-fractionated I-type granites in the southwestern Qaidam Basin suggests a Permian–Triassic active continental margin in the northern margin of the East Kunlun orogenic belt.
基金substantially supported by the National Nature Science Foundation of China(Grant No.41872220)。
文摘The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.
基金supported jointly by the National Natural Science Foundation of China(Grant No.41502347)the Young Scholars development fund of SWPU(Grant No.201499010028)+2 种基金the Research Program for the Education Department of Sichuan Province(Grant No.16ZB0087)the Research Program for the Education Department of Sichuan Province(Grant No.15ZB0073)the"Innovative Research Teams at the Local University of Sichuan Province"(Grant No.13TD0008)
文摘The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U-Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U-Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma,which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calcalkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated ε_(Hf)(t) values of-12.7 to-3.7 and two-stage model ages of 1327-1974 Ma,respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong-Nujiang Ocean.
基金the China Geological Survey(Nos.DD20190370,121201111120117)。
文摘The tectonic evolution of the southwestern Yangtze Block during the Early Neoproterozoic period is still controversial because of the limited quantities of 1000–860 Ma magmatic rocks.In this study,our new LA-ICP-MS zircon U-Pb dating results demonstrate that the Yanbian granodiorites in the southwest Yangtze Block were emplaced at 894.6±7.4 Ma,representing the product of an 894 Ma magmatism.The Yanbian granodiorites are metaluminous to weak peraluminous with A/CNK values of 0.8–1.1,resembling Itype granitoids.They are characterized by right-inclined REE patterns with moderate to insignificant negative Eu anomalies(δEu=0.6–0.9).Their primitive mantle-normalized trace element patterns are characterized by depletion of Nb,Ta and Ti and weakly enrichment of Th.Considering the positive whole-rockεNd(t)(+5.8 to+6.8),we propose that these granodiorites originated from the partial melting of juvenile mafic lower crust.The Yanbian I-type granitoids have low Y and Nb contents similar to volcanic arc igneous rocks in the Y-Nb plot for tectonic discrimination.In conclusion,Early Neoproterozoic Yanbian granodiorites have generated in a compression setting in an active continental margin.Together with previous studies from the southwestern Yangtze Block,we suggest that the 894 Ma subduction-related Yanbian granodiorites represent the early stage of subduction at the southwestern margin of the Yangtze Block.
基金financially supported by the geological survey project of China Geological Survey (Grant No. DD20160161)
文摘The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopic compositions was carried out to define the timing, genesis and tectonic setting of the JM. Zircon LA-ICP-MS U-Pb ages have been obtained ranging from 210 to 215 Ma, rather than the Early Jurassic as previously thought. Fifteen granite samples contain hornblendes and show a negative correlation between POand SiO, indicating that the JM is an I-type granite. All the granites are enriched in LREE relative to HREE, with negative Eu anomalies(Eu/Eu*=0.56-0.81), and have similar trace elements patterns, with depletion of Ba, Nb, Sr and P. These suggest that the JM was fractionated, and this is also proved by the characteristic of negative correlations between oxide elements(TiO, MgO, FeOt, MnO, CaO) and SiO. Almost all ε(t) values of the granites are between-10.3 and-5.8, implying that the JM has a crustal source intimately related with the South Qiangtang Block(SQB), except for one(+10.2), showing a minor contribution from mantle source.Moreover, relatively low NaO/KO ratios(0.42-0.93) and high A/CNK values(0.91-1.50) reflect that the JM was predominately derived from the medium-high potassium basaltic crust, interacted with greywacke. Our new geochemical data and geochronological results imply that the Late Triassic magmas were generated in a post-collisional tectonic setting, probably caused by slab break-off of the Longmu Co-Shuanghu Tethyan Ocean(LSTO). This mechanism caused the asthenosphere upwelling, formed extension setting, offered an enormous amount of heat, and provided favorable conditions for emplacement of voluminous felsic magmas. Furthermore, the LSTO could be completely closed during the Middle Triassic, succeed by continental collision and later the slab broke off in the Late Triassic.
基金This study was financially supported in part by the National Key Research and Development Program of China(Grant Nos:2021YFC2901803,2021YFC2901903,2019YFC0605201)National Natural Science Foundation of China(Grant Nos:92055314,91955208,42002097)+2 种基金China Geological Survey Project(Grant Nos:DD20221776,DD20190542,DD20190147)Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences(Grant No:XDA20070304)the International Scientific Plan of the Qinghai-Xizang(Tibet)Plateau of Chengdu Center,China Geological Survey.
文摘Cretaceous magmatism is widely distributed on both sides of the Bangong-Nujiang suture zone(BNSZ).These rocks record the subduction to closure history of the Bangong-Nujiang Tethys Ocean(BNO)and the collisional history between the Lhasa(LS)and Qiangtang(QT)terranes.The Xiabie Co granite in Nyima County,which located on the southern margin of the QT terrane,Tibet.In this study,whole-rock geochemistry;Rb-Sr,Sm-Nd,and Pb isotopes;and laser ablation inductively coupled mass spectrometry(LA-ICP-MS)zircon U-Pb ages and Lu-Hf isotopes of the Xiabie Co granite in the Nyima area have been studied to constrain its petrogenesis and tectonic setting.Our study can help explain the tectonic evolution of the BNSZ and crust-mantle interaction.Zircon U-Pb dating indicates that the granite was emplaced at ca.120 Ma.The granite contains a small amount of hornblende and has high silicon(SiO2=73.97-78.03 wt%),potassium(K_(2)O=4.75-6.53 wt%),and total alkali(K_(2)O+Na_(2)O=7.98-8.98 wt%)contents;low calcium content(CaO=2.33-4.11 wt%);and variable A/CNK(1.00-1.18)and A/NK(1.09-1.22)values.The P_(2)O_(5) content of the granite negatively correlated with the SiO_(2)content.Thus,the Xiabie Co granite is a weakly peraluminous I-type granite belonging to the high-K calcalkaline to Shoshone series.It is enriched in light rare earth elements(LREEs)and relatively depleted in heavy rare earth elements(HREEs),with LREE/HREE ratios of 8.03-16.40 and La_(N)/Yb_(N) ratios of 10.2-27.1.Samples show right-leaning chondrite-normalized rare earth element patterns with pronounced negative Eu anomalies(Eu/Eu*=0.67-0.76).The primitive-mantle-normalized trace element spider diagrams of the samples are right-leaning zigzag curves,showing relative enrichment in large-ion lithophile elements(LILEs,e.g.,Rb,Th,U,and K)and depletion in high-field-strength elements(HFSEs,e.g.,Nb,P,Ti,and Yb)and displaying striking Sr and Ba negative anomalies.The graniteεHf(t)values were positive(2.9-9.9),whereas the whole-rockεNd(t)values were negative(−2.841 to−2.33).The calculated(^(87)Sr/^(86)Sr)t,(^(206)Pb/^(204)Pb)t,(^(207)Pb/^(204)Pb)t,and(^(208)Pb/^(204)Pb)t values are 0.7014-0.7057(0.7044 on average),18.422-18.851(18.670 on average),15.625-15.642(15.633 on average),and 38.332-38.681(39.571 on average),respectively.On the basis of the aforementioned data,we propose that the Xiabie Co granite was derived from a primitive magma that originated from partial melting of juvenile lower crust with the addition of mantle materials.In addition,strong fractional crystallization occurred during the rock-forming process.Given the geodynamic setting,our new data,together with previously reported achievements,imply that the Xiabie Co granite was formed during the LS-QT collision.
基金funded by the State Technology Support Program(2015BAB05B03-02)
文摘1 Introduction The western Kunlun orogen,located in the northwest Tibet Plateau,and is a conjunction between the Pan-Asian and the Tethys tectonic domains.From north to south,the Western Kunlun orogen includes four
基金National Natural Science Foundation of China,No.81860519.
文摘BACKGROUND Robotic resection using the natural orifice specimen extraction surgery I-type F method(R-NOSES I-F)is a novel minimally invasive surgical strategy for the treatment of lower rectal cancer.However,the current literature on this method is limited to case reports,and further investigation into its safety and feasibility is warranted.AIM To evaluate the safety and feasibility of R-NOSES I-F for the treatment of low rectal cancer.METHODS From September 2018 to February 2022,206 patients diagnosed with low rectal cancer at First Affiliated Hospital of Nanchang University were included in this retrospective analysis.Of these patients,22 underwent R-NOSES I-F surgery(RNOSES I-F group)and 76 underwent conventional robotic-assisted low rectal cancer resection(RLRC group).Clinicopathological data of all patients were collected and analyzed.Postoperative outcomes and prognoses were compared between the two groups.Statistical analysis was performed using SPSS software.RESULTS Patients in the R-NOSES I-F group had a significantly lower visual analog score for pain on postoperative day 1(1.7±0.7 vs 2.2±0.6,P=0.003)and shorter postoperative anal venting time(2.7±0.6 vs 3.5±0.7,P<0.001)than those in the RLRC group.There were no significant differences between the two groups in terms of sex,age,body mass index,tumor size,TNM stage,operative time,intrao-perative bleeding,postoperative complications,or inflammatory response(P>0.05).Postoperative anal and urinary functions,as assessed by Wexner,low anterior resection syndrome,and International Prostate Symptom Scale scores,were similar in both groups(P>0.05).Long-term follow-up revealed no significant differences in the rates of local recurrence and distant metastasis between the two groups(P>0.05).CONCLUSION R-NOSES I-F is a safe and effective minimally invasive procedure for the treatment of lower rectal cancer.It improves pain relief,promotes gastrointestinal function recovery,and helps avoid incision-related complications.
基金supported by the National Natural Science Foundation of China(92055208,41772059,42174080)the CAS"Light of West China"Program(2018-XBYJRC-003)+3 种基金the Guangxi Natural Science Foundation for Distinguished Young Scholars,China(2018GXNSFFA281009)the Guangxi Science Innovation Base Construction Foundation(GuikeZY21195031)the Guangxi Natural Science Foundation for Innovation Research Team Program(GXNSFGA380004)the Fifth Bagui Scholar Innovation Project of Guangxi Zhuang Autonomous Region,China。
文摘The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB,and their place within the Rodinia supercontinent.However,to date,the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained,with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block.Here,we present a systematic study combining U-Pb geochronology,whole-rock geochemistry,and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block.The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma.These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity.The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs),but they are depleted in high field strength elements(HFSEs);these characteristics are similar to those of typical subduction-related magmatism.All samples show initial(^(87)Sr/^(86)Sr)(t)ratios between 0.705136 and 0.706745.Values forεNd(t)in the granitic gneisses are in the range from-5.7 to-1.2,which correspond to Nd model ages of 2.0-1.7 Ga,indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths.The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source,which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material.The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40572051, 40830317, 40873023, 40672044)National Basic Research Program of China (Grant No. 2009CB421002), Chinese "111" Project (Grant No. B07011)Programme of the Integrated Study of Basic Geology of Qinghai-Tibetan Plateau of the China Geological Survey
文摘The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%–76.8%), K2O (4.4%–5.7%), and low P2O5 (0.05%–0.12%). These samples also have A/CNK values of 1.00–1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high ? Nd(t) values (?10.9–?7.6) and low initial 87Sr/86Sr ratios (0.7120–0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon ? Hf(t) values (?12.8–?2.9), yielding ancient zircon Hf crustal model ages of 1.4–2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789–821 °C) indicate that mantle-derived materials likely played a role in the generation of the Zayu pluton. We propose that the Zayu pluton was most likely generated in a setting associated with southward subduction of the Bangong-Nujiang ocean floor, where mantle wedge-derived magmas may have provided the heat and material for the anatexis of ancient crust of the Lhasa micro-continent, resulted in hybrid melts (i.e., mantle-derived basaltic magmas + crust-derived felsic magmas). Such hybrid melts with subsequent fractional crystallization are responsible for the highly evolved Zayu pluton (crust thickening is not a prerequisite).
基金国家自然科学基金联合基金项目(U21A20485)浙江省高等教育“十四五”本科教育教学改革项目(jg20220019)+3 种基金浙江省产学合作协同育人项目(202018)浙江大学2023年度本科教学创新实践项目重点项目(202309)浙江省基础公益研究计划项目(LGG22F030008)浙江大学第一批AI For Education系列实证教学研究项目(202402)。
基金partly supported by Eurasia-Pacific Uninet projects(Nos.EPU 08/2019 and EPU 18/2020)to Etienne Skrzypek,Rustam Orozbaev and Christoph Hauzenberger。
文摘Permian intrusions are widespread in the Middle and Southern Tien-Shan,with fewer occurrences in the Northern Tien-Shan.Notably,many of these intrusions are spatially associated with a variety of ore deposits,indicating a significant link between magmatic activity and mineralization processes in these areas.We studied granite samples recently recovered from drilling in the Kumtor gold field to evaluate their potential relationships with gold mineralization.The major and trace element geochemistry,zircon U-Pb age and Hf isotope data for this so-called Kumtor granite are reported.The Kumtor granite is metaluminous to peraluminous and belongs to the high-K and calc-alkaline series with I-type geochemical characteristics.The relatively high K_(2)O and Na_(2)O concentrations and low high field strength elements(HFSE)and heavy rare earth elements(HREE),the presence of biotite within these I-type granites,together with their low zircon saturation temperatures(731-779℃),suggest that they were likely derived from a hydrous source formed by dehydration melting of mica-bearing,medium-to high-K metabasaltic rocks.The zircon U-Pb dating results indicate that the Kumtor granite intruded at 293±1.7 Ma,which is consistent with the age range of other Middle Tien-Shan granitoids.The zircon Hf isotopic composition isε_(Hf)(t)=-7.56 to-5.05,indicating an ancient(1.39 to 1.52 Ga)crustal origin.Petrographical,geochemical and geochronological data indicate that the Kumtor granite is similar to leucogranites of the Terekty Complex.These results indicate that the Kumtor granite was emplaced in the Early Permian in a postcollision setting and may have temporal and genetic relationships with gold mineralization.