期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Edge computing aileron mechatronics using antiphase hysteresis Schmitt trigger for fast flutter suppression
1
作者 Tangwen Yin Dan Huang Xiaochun Zhang 《Control Theory and Technology》 2025年第1期153-160,共8页
An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This ... An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection. 展开更多
关键词 AILERON Edge computing Flutter suppression MECHATRONICS Nonlinear hysteresis control Positive feedback
原文传递
A nonlinear hysteresis compensation control of hydro-viscous drive in air transport operations
2
作者 Liang WANG Jianjian LIANG +2 位作者 Lin ZHANG Shoukun WANG Junzheng WANG 《Chinese Journal of Aeronautics》 2025年第2期161-174,共14页
The Hydro-Viscous Drive(HVD)speed regulating system finds extensive application in air transport transmission systems to regulate the stepless speed or conduct overload protection.However,its intrinsic hysteretic beha... The Hydro-Viscous Drive(HVD)speed regulating system finds extensive application in air transport transmission systems to regulate the stepless speed or conduct overload protection.However,its intrinsic hysteretic behaviors,such as the asymmetric hysteretic and dead zone,could introduce inaccuracy and delay in control applications,posing challenges to system regulation.This paper investigates a Nonlinear Hysteresis Compensation Control(NHCC)that consists of two parts to control the HVD output speed by operating the valve under different engine operating conditions.In the first part,the Inverse Hysteresis Compensator(IHC)based on major loop data is introduced for the asymmetric hysteresis characterization and compensation of the HVD speed control system of the power generation and distribution,which aims to reduce the hysteresis and dead zone effect and expand the effective input range.In the second part,the Active Disturbance Rejection Controller(ADRC)is employed to mitigate the hysteresis effects of the compensated system and remove the steady-state error,which allows real-time compensation of the estimated perturbations as state feedback to achieve the required performance.An experimental laboratory station has been fabricated to evaluate the proposed method.The test results show that the NHCC method can regulate the fan speed to the desired value(45 r/min at steady state)and broaden the effective input range to the full range under different engine conditions.Besides,the proposed control method can reduce the non-linearity of the input and output curves(from 18%to 4%)and compensate for the asymmetric hysteresis(from 38%to 5%). 展开更多
关键词 Hydro-viscous drive Nonlinear hysteresis compensation Inverse hysteresis compensation Speed regulating system ADRC
原文传递
A novel extended Tsypkin criterion for discrete-time descriptor systems with ferromagnetic hysteresis nonlinear physical phenomenon
3
作者 张化光 宋铮 张庆灵 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期126-134,共9页
This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity condit... This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity conditions of hysteresis operator, that is the input-output relation of the transformed operator is passive. The bound condition of the solution of the ferromagnetic hysteresis model is given. Through the framework of loop transformation, an augmented discrete-time descriptor system model is established for the stability analysis. A new extended Tsypkin criterion for the absolute stability of discrete-time descriptor systems with hysteresis is presented based on the linear matrix inequalities technique. A numerical example is given to illustrate the effectiveness of the extended criterion. 展开更多
关键词 ferromagnetic hysteresis nonlinearity discrete-time descriptor systems extended Tsypkin criterion
原文传递
Active control for a flexible beam with nonlinear hysteresis and time delay
4
作者 Kun Liu Longxiang Chen Guoping Cai 《Theoretical & Applied Mechanics Letters》 CAS 2013年第6期29-34,共6页
A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. B... A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, we can convert the motion equation of the system with explicit time delay to the standard state space representation without any explicit time delay. Then the instantaneous optimal control method and Runge-Kutta method in fourth-order are applied to the controller design with time delay. Finally, in order to verify the effectivity of the time-delay controller proposed, numerical simulations are implemented. It is indicated by the simulation results that the control performance will deteriorate if neglect the time delay in process of the controller design and proposed time delay controller works well with both small and large time delay problems. 展开更多
关键词 nonlinear and hysteresis structure active control time delay
在线阅读 下载PDF
Modeling and sliding mode control based on inverse compensation of piezo-positioning system
5
作者 LI Zhi-bin XIN Yuan-ze +1 位作者 ZHANG Jian-qiang SUN Chong-shang 《中国光学(中英文)》 北大核心 2025年第1期170-185,共16页
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis... In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system. 展开更多
关键词 piezo-positioning system hysteresis nonlinearity Hammerstein model Prandtl-Ishlinskii(P-I)model system identification sliding mode control
在线阅读 下载PDF
High precise control method for a new type of Piezoelectric electro-hydraulic servo valve 被引量:2
6
作者 周淼磊 田彦涛 +1 位作者 高巍 杨志刚 《Journal of Central South University of Technology》 EI 2007年第6期832-837,共6页
A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of th... A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%. 展开更多
关键词 piezoelectric electro-hydraulic servo valve hysteresis nonlinearity Preisach model fuzzy control
在线阅读 下载PDF
Feedback linearization and equivalent-disturbance compensation control strategy for piezoelectric stage 被引量:1
7
作者 Tao Huang Yingbin Wang +3 位作者 Zhihong Luo Huajun Cao Guibao Tao Mingxiang Ling 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期49-59,共11页
Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ... Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance. 展开更多
关键词 Piezoelectric stage hysteresis nonlinearity Feedback linearization Equivalent-disturbance compensation
在线阅读 下载PDF
The effects of cold region meteorology and specific environment on the number of hospital admissions for chronic kidney disease:An investigate with a distributed lag nonlinear model 被引量:1
8
作者 Xinrui Wei Rui Jiang +3 位作者 Yue Liu Guangna Zhao Youyuan Li Yongchen Wang 《Frigid Zone Medicine》 2023年第2期65-76,共12页
Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney ... Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney disease(CKD)patients admitted to the Second Affiliated Hospital of Harbin Medical University in Harbin and to identify the indexes and lag days that impose the most critical influence.Methods:The R language Distributed Lag Nonlinear Model(DLNM),Excel,and SPSS were used to analyze the disease and meteorological data of Harbin from 01 January 2010 to 31 December 2019 according to the inclusion and exclusion criteria.Results:Meteorological factors and air pollution influence the number of hospitalizations of CKD to vary degrees in cold regions,and differ in persistence or delay.Non-optimal temperature increases the risk of admission of CKD,high temperature increases the risk of obstructive kidney disease,and low temperature increases the risk of other major types of chronic kidney disease.The greater the temperature difference is,the higher its contribution is to the risk.The non-optimal wind speed and non-optimal atmospheric pressure are associated with increased hospital admissions.PM2.5 concentrations above 40μg/m3 have a negative impact on the results.Conclusion:Cold region meteorology and specific environment do have an impact on the number of hospital admissions for chronic kidney disease,and we can apply DLMN to describe the analysis. 展开更多
关键词 chronic kidney disease distributed hysteresis nonlinear model number of hospital admissions meteorological factors air pollution
原文传递
Robust intelligent modeling for giant magnetostrictive actuators with rate-dependent hysteresis 被引量:1
9
作者 Wei Zhang Jianqin Mao 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第4期500-514,共15页
Purpose–This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate-dependent nonlinear property.Design/methodology/approach–It is known in statistics that the Least Wilcoxon l... Purpose–This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate-dependent nonlinear property.Design/methodology/approach–It is known in statistics that the Least Wilcoxon learning method developed using Wilcoxon norm is robust against outliers.Thus,it is used in the paper to determine the consequence parameters of the fuzzy rules to reduce the sensitiveness to the outliers in the input-output data.The proposed method partitions the input space adaptively according to the distribution of samples and the partition is irrelative to the dimension of the input data set.Findings–The proposed modeling method can effectively construct a unique dynamic model that describes the rate-dependent hysteresis in a given frequency range with respect to different single-frequency and multi-frequency input signals no matter whether there exist outliers in the training set or not.Simulation results demonstrate that the proposed method is effective and insensitive against the outliers.Originality/value–The main contributions of this paper are:first,an intelligent modeling method is proposed to deal with the rate-dependent hysteresis presented in the giant magnetostrictive actuator and the modeling precision can fulfill the requirement of engineering,such as the online modeling issue in the active vibration control;and second,the proposed method can handle the outliers in the input-output data effectively. 展开更多
关键词 Giant magnetostrictive actuator Rate-dependent hysteresis nonlinearity Least Wilcoxon Fuzzy Tree method OUTLIERS Actuators Fuzzy logic
在线阅读 下载PDF
Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis 被引量:12
10
作者 MAO JianQin DING HaiShan 《Science in China(Series F)》 2009年第4期656-673,共18页
A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. ... A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach. 展开更多
关键词 nonlinear systems with rate-dependent hysteresis intelligent modeling and control fuzzy tree model T-S fuzzy model adaptiveinverse control
原文传递
Nonlinear dynamic characteristics of magneto-rheological visco-elastomers 被引量:5
11
作者 YING ZuGuang NI YiQing SAJJADI Masoud 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期878-883,共6页
The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experim... The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE. 展开更多
关键词 nonlinear hysteresis dynamic modeling magneto-rheological visco-elastomer complex stiffness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部