This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Pra...This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Prandtl-Ishlinskii(CPI)model's defects, i.e., the symmetric property. The high accuracy for modeling asymmetric hysteresis is validated by comparing simulation results with experimental measurements. In order to further evaluate the performance of the proposed model in closed-loop tracking application, two different hybrid control methods which experimentally demonstrate their performance under the same operating conditions, are compared to validate that the hybrid control strategy with proposed hysteresis model can mitigate the hysteresis more effectively and achieve better tracking precision. The experimental results demonstrate that the proposed modeling and tracking control strategy can realize efficient control of piezoelectric actuator.展开更多
This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme ...This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.展开更多
Flexible ureteroscopy(FURS)has been widely used in the diagnosis and treatment of upper urinarytract diseases.The key operation of FURS is that the surgeon manipulates the distal shaft of flexible ureteroscopeto a spe...Flexible ureteroscopy(FURS)has been widely used in the diagnosis and treatment of upper urinarytract diseases.The key operation of FURS is that the surgeon manipulates the distal shaft of flexible ureteroscopeto a specific target for diagnosis and treatment.However,the hysteresis of flexible ureteroscope may be one ofthe most important factors that degrade the manipulation accuracy and the surgeon usually spends a long timenavigating the distal shaft during surgery.In this study,we obtained hysteresis curves of distal shaft deflectionfor the flexible ureteroscope through extensive repeated experiments.Then,two methods based on piecewiselinear approximation and long short-term memory neural network were employed to model the hysteresis curves.On this basis,we proposed two hysteresis compensation strategies for the distal shaft deflection.Finally,wecarried out hysteresis compensation experiments to verify the two proposed compensation strategies.Experimentalresults showed that the hysteresis compensation strategies can significantly improve position accuracy with meancompensation errors of no more than 5°.展开更多
Planar positioning systems are widely utilized in micro and nano applications.The challenges in modeling and control of XYΘflexure-based mechanisms include hysteresis of the piezoelectric actuators,couplings among th...Planar positioning systems are widely utilized in micro and nano applications.The challenges in modeling and control of XYΘflexure-based mechanisms include hysteresis of the piezoelectric actuators,couplings among the input axes,and coupled linear and angular motions of the end effector.This paper presents an inverse hysteresis-coupling hybrid model to account for such hysteresis and couplings.First,a specially designed kinematic chain is adopted to transfer the pose of the end effector into the linear motions at three prismatic joints.Second,an inverse hysteresis-coupling hybrid model is developed to linearize and decouple the system via a multilayer feedforward neural network.A fractional-order PID controller is also integrated to improve the motion accuracy of the overall system.Experimental results demonstrate that the proposed method can accurately control the motion of the end effector with improved accuracy and robustness.展开更多
This paper presents a method for the length-pressure hysteresis modeling of pneumatic artificial muscles(PAMs)by using a modified generalized Prandtl-Ishlinskii(GPI)model.Different from the approaches for establishing...This paper presents a method for the length-pressure hysteresis modeling of pneumatic artificial muscles(PAMs)by using a modified generalized Prandtl-Ishlinskii(GPI)model.Different from the approaches for establishing the GPI models by replacing the linear envelope functions of operators with hyperbolic tangent and exponential envelop functions,the proposed model is derived by modifying the envelope functions of operators into arc tangent functions,which shows an improvement in the modeling accuracy.The effectiveness of the proposed model is verified by the experimental data of a PAM.Furthermore,its capacity in capturing the hysteresis relationship between length and pressure is testified by giving different input pressure signals.With regard to the computational efficiency,the influence of the number of operators on the modeling accuracy is discussed.Furthermore,the inversion of the GPI model is derived.Its capability of compensating the hysteresis nonlinearities is confirmed via the simulation and experimental study.展开更多
This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,a...This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established.展开更多
An adaptive control scheme is presented for systems with unknown hysteresis. In order to handle the case where the hysteresis output is unmeasurale, a novel model is firstly developed to describe the characteristic of...An adaptive control scheme is presented for systems with unknown hysteresis. In order to handle the case where the hysteresis output is unmeasurale, a novel model is firstly developed to describe the characteristic of hysteresis. This model is motivated by Preisach model but implemented by using neural networks ( NN) . The main advantage is that it is easily used for controller design. Then, the adaptive controller based on the proposed model is presented for a class of SISO nonlinear systems preceded by unknown hysteresis, which is estimated by the proposed model. The laws for model updating and the control laws for the neural adaptive controller are derived from Lyapunov stability theorem, therefore the semiglobal stability of the closed-loop system is guaranteed. At last, the simulation results are illustrated.展开更多
The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(S...The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(SVM)is proposed to capture the rate-dependent hysteresis nonlinearity.We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model.Subsequently,a two-degree-of-freedom(2DOF)H∞robust control scheme for the ratedependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator(PEA)for real-time precision trajectory tracking.Simulations and experiments on the structure verify both the efectiveness and the practicality of the proposed modeling and control methods.展开更多
To deal with the rate-dependent hysteresis presented in a magnetostrictive actuator, a new method of modeling and control is proposed. The relationship between inputs and outputs of the actuator is approximately descr...To deal with the rate-dependent hysteresis presented in a magnetostrictive actuator, a new method of modeling and control is proposed. The relationship between inputs and outputs of the actuator is approximately described by a dynamic differential equation with two rate-dependent coefficients, each expressed as a polynomial of frequency. For a given frequency, the coefficients will be able to be estimated by approximating the experimental data of the outputs of the magnetostrictive actuator. Based on this model, a quasi-PID controller is designed. In the space of the coefficients and frequency, the stable domain of closed loop system with hysteresis is analyzed. The numerical simulation and experiments have born witness to the feasibility of the proposed new method.展开更多
A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hystere...A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hysteresis,which can cause serious displacement errors.Piezoelectric hysteresis is from various origins including movement of defects,grain boundary effects,and displacement of interfaces.Furthermore,because its characteristic is stochastic,it is almost impossible to predict the piezoelectric hysteresis analytically.Therefore,it was predicted phenomenologically,which means that the relationship between inputs and outputs is formulated.The typical phenomenological approach is the Rayleigh model.However,the model has the discrepancy with experiment result as the fields increase.To overcome the demerit of the Rayleigh model,a modified Rayleigh model was proposed.In the modified Rayleigh model,each coefficient should be defined differently according to the field direction due to the increase of the asymmetry in the high fields.By applying an inverse form of this modified Rayleigh model to an AFM scanner,it is proved that hysteresis can be compensated to a position error of less than 5%.This model has the merits of reducing complicated fitting procedures and saving computation time compared with the Preisach model.展开更多
To solve the rate-dependent hysteresis compensation problem in fast steering mirror(FSM) systems, an improved Prandtl-Ishlinskii(P-I) model is proposed in this paper. The proposed model is formulated by employing a li...To solve the rate-dependent hysteresis compensation problem in fast steering mirror(FSM) systems, an improved Prandtl-Ishlinskii(P-I) model is proposed in this paper. The proposed model is formulated by employing a linear density function into the STOP operator. By this way, the proposed model has a relatively simple mathematic format, which can be applied to compensate the rate-dependent hysteresis directly. Adaptive differential evolution algorithm is utilized to obtain the accurate parameters of the proposed model. A fast steering mirror control system is established to demonstrate the validity and feasibility of the improved P-I model. Comparative experiments with different input signals are performed and analyzed, and the results show that the proposed model not only suppresses the rate-dependent hysteresis effectively, but also obtains high tracking precision.展开更多
The conception of aircraft morphing wings thrives in aeronautics since the appearance of shape memory alloys(SMAs). An aircraft morphing wing device, manipulated by an SMA actuator, inherits the intrinsic nonlinear hy...The conception of aircraft morphing wings thrives in aeronautics since the appearance of shape memory alloys(SMAs). An aircraft morphing wing device, manipulated by an SMA actuator, inherits the intrinsic nonlinear hysteresis from the SMA actuator, ending up with control disadvantages. Conventionally, systems with SMA actuators are constrained to bi-stable states to bypass the hysteresis region. Rather than retreating a morphing wing device to bi-stable states, this paper is dedicated to transcend the morphing wing device beyond the customary limit. A methodology of discrete Preisach modeling, which identifies the hysteresis of the morphing wing device, is proposed herein. An array of discrete equal-distance points is applied to the Preisach plane in order to derive the Preisach density over the partitioned unit of the Preisach plane. Discrete Preisach modeling is fulfilled by the discrete first-order reversible curve(DFORC). By utilizing the discrete Preisach model, the aircraft morphing wing device is simulated; the validity and accuracy of discrete Preisach modeling are demonstrated by contrasting the simulated outcome with experimental data of the major hysteretic loop and the wingspan-wise displacement over time; a comparison between simulation and experimental results exhibits consistency. Afterwards, a hysteresis compensation strategy put forward in this paper is implemented for quasi-linear control of the aircraft morphing wing device, which manifests a compensated shrinking hysteresis loop and attains the initiative of extending the morphing range to the intrinsic hysteretic region.展开更多
The development of control techniques to mitigate the effects of unknown hysteresis preceding with plants has recently re-attracted significant attention. In this paper, we first give a brief review of presently devel...The development of control techniques to mitigate the effects of unknown hysteresis preceding with plants has recently re-attracted significant attention. In this paper, we first give a brief review of presently developed hysteresis models and hysteresis compensating control methods.Then, with the use of the Prandtl-Ishlinskii hysteresis model, we propose a robust adaptive control scheme. The novelty is that the model of hysteresis nonlinearities is firstly fused with the available control techniques without necessarily constructing a hysteresis inverse. The global stability of the adaptive system and tracking a desired trajectory to a certain precision are achieved. Simulations performed on a nonlinear system illustrate and clarify the approach.展开更多
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the thr...An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme.展开更多
A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinc...A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
Smart soft dielectric elastomer actuators(SSDEAs)possess wide applications in soft robotics due to their properties similar to natural muscles,including large deformation ratio,high energy density,and fast response sp...Smart soft dielectric elastomer actuators(SSDEAs)possess wide applications in soft robotics due to their properties similar to natural muscles,including large deformation ratio,high energy density,and fast response speed.However,the complicated asymmetric and rate-dependent hysteresis property,creep property and quadratic input property of the SSDEA pose enormous challenges to its dynamic modeling and motion control.In this paper,first,we construct the dynamic model of the SSDEA by connecting a square module,a one-sided Prandtl–Ishlinskii(OSPI)model and a linear system in series to describe the above properties.The key and innovative aspect of the dynamic modeling lies in cascading the square module in series with the OSPI model to construct the asymmetric hysteresis model.Subsequently,a PI-funnel and inverse hysteresis compensation(PIFIHC)cascade control method of the SSDEA is proposed to actualize its tracking control objective.By performing the inversion operation on the asymmetric hysteresis model,the inverse hysteresis compensation controller(IHCC)is designed to compensate the asymmetric hysteresis property and quadratic input property of the SSDEA.In addition,a PI-funnel controller is designed to cascade with the IHCC to construct the PIFIHC cascade controller to obtain a good tracking performance.Then,the stability analysis of the PIFIHC cascade control system of the SSDEA is performed to theoretically prove that the tracking error can be controlled within the performance funnel and the steady-state error converges to zero.Finally,several practical tracking control experiments of the SSDEA are conducted,and RRMSEs are less than 2.30%for all experiments.These experimental results indicate the effectiveness and feasibility of the proposed PIFIHC cascade control method of the SSDEA.展开更多
This paper presents the field oriented vector control scheme for synchronous reluctance motor (SRM) drives, where current controller followed by hysteresis comparator is used. The test motor has a star-connected wound...This paper presents the field oriented vector control scheme for synchronous reluctance motor (SRM) drives, where current controller followed by hysteresis comparator is used. The test motor has a star-connected wound stator and a segmental rotor of the multiple barrier type with an external incremental encoder to sense rotor position. The magnetic characteristics of this motor are described using 2D finite element method, which is used firstly for rotor design of SRM. The field oriented vector control, that regulates the speed of the SRM, is provided by a quadrature axis current command developed by the speed controller. The simulation includes all realistic components of the system. This enables the calculation of currents and voltages in different parts of the voltage source inverter (VSI) and motor under transient and steady state conditions. Implementation has been done in MATLAB/Simulink. A study of hysteresis control scheme associated with current controllers has been made. Experimental results of the SRM control using TMS320F24X DSP board are presented. The speed of the SRM is successfully controlled in the constant torque region. Experimental results of closed loop speed control of the SRM are given to verify the proposed scheme.展开更多
Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters ...Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given.展开更多
A structural model is significant for the verification of structural control algorithms. However, for nonlinear behavior, experiments are mostly destructive tests that are costly, and conducting repetitive structural ...A structural model is significant for the verification of structural control algorithms. However, for nonlinear behavior, experiments are mostly destructive tests that are costly, and conducting repetitive structural experiments is difficult. Therefore, a repetitive structural vibration model is important for structural vibration control. In this study, a smart platform to realize different structural behaviors is developed based on the backstepping control algorithm. Lyapunov functions are used to derive the control law. Simulations show that the designed model can track the structural responses of different arbitrary linear structures very well. In addition, the proposed platform can track responses of different piecewise linear structures and desired models with various hysteresis very well. Numerical results verify the effectiveness of the proposed tracking controller through the backstepping method for the established platform.展开更多
基金supported by the National Natural Science Foundation of China(51505133,61108038)the Doctoral Science Foundation of Henan Polytechnic University(60407/010)Chunhui Program of Ministry of Education of China(Z2011069)
文摘This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Prandtl-Ishlinskii(CPI)model's defects, i.e., the symmetric property. The high accuracy for modeling asymmetric hysteresis is validated by comparing simulation results with experimental measurements. In order to further evaluate the performance of the proposed model in closed-loop tracking application, two different hybrid control methods which experimentally demonstrate their performance under the same operating conditions, are compared to validate that the hybrid control strategy with proposed hysteresis model can mitigate the hysteresis more effectively and achieve better tracking precision. The experimental results demonstrate that the proposed modeling and tracking control strategy can realize efficient control of piezoelectric actuator.
文摘This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.
基金the National Natural Science Foundation of China(Nos.61973211,62133009,51911540479 and M-0221)the Project of the Science and Technology Commission of Shanghai Municipality(Nos.21550714200 and 20DZ2220400)the Project of the Institute of Medical Robotics of Shanghai Jiao Tong University,and the Interdisciplinary Program of Shanghai Jiao Tong University(Nos.ZH2018QNB31 and YG2017MS27)。
文摘Flexible ureteroscopy(FURS)has been widely used in the diagnosis and treatment of upper urinarytract diseases.The key operation of FURS is that the surgeon manipulates the distal shaft of flexible ureteroscopeto a specific target for diagnosis and treatment.However,the hysteresis of flexible ureteroscope may be one ofthe most important factors that degrade the manipulation accuracy and the surgeon usually spends a long timenavigating the distal shaft during surgery.In this study,we obtained hysteresis curves of distal shaft deflectionfor the flexible ureteroscope through extensive repeated experiments.Then,two methods based on piecewiselinear approximation and long short-term memory neural network were employed to model the hysteresis curves.On this basis,we proposed two hysteresis compensation strategies for the distal shaft deflection.Finally,wecarried out hysteresis compensation experiments to verify the two proposed compensation strategies.Experimentalresults showed that the hysteresis compensation strategies can significantly improve position accuracy with meancompensation errors of no more than 5°.
基金supported in part by the Open Fund of State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment,Guangdong University of Technology(Grant No.JMDZ2021007)in part by the Guangdong International Cooperation Program of Science and Technology(Grant No.2022A0505050078).
文摘Planar positioning systems are widely utilized in micro and nano applications.The challenges in modeling and control of XYΘflexure-based mechanisms include hysteresis of the piezoelectric actuators,couplings among the input axes,and coupled linear and angular motions of the end effector.This paper presents an inverse hysteresis-coupling hybrid model to account for such hysteresis and couplings.First,a specially designed kinematic chain is adopted to transfer the pose of the end effector into the linear motions at three prismatic joints.Second,an inverse hysteresis-coupling hybrid model is developed to linearize and decouple the system via a multilayer feedforward neural network.A fractional-order PID controller is also integrated to improve the motion accuracy of the overall system.Experimental results demonstrate that the proposed method can accurately control the motion of the end effector with improved accuracy and robustness.
基金supported by the National Key Technologies Research&Development Program of China(Grant No.2018YFB2101000)the National Natural Science Foundation of China(Grant No.51622508).
文摘This paper presents a method for the length-pressure hysteresis modeling of pneumatic artificial muscles(PAMs)by using a modified generalized Prandtl-Ishlinskii(GPI)model.Different from the approaches for establishing the GPI models by replacing the linear envelope functions of operators with hyperbolic tangent and exponential envelop functions,the proposed model is derived by modifying the envelope functions of operators into arc tangent functions,which shows an improvement in the modeling accuracy.The effectiveness of the proposed model is verified by the experimental data of a PAM.Furthermore,its capacity in capturing the hysteresis relationship between length and pressure is testified by giving different input pressure signals.With regard to the computational efficiency,the influence of the number of operators on the modeling accuracy is discussed.Furthermore,the inversion of the GPI model is derived.Its capability of compensating the hysteresis nonlinearities is confirmed via the simulation and experimental study.
基金supported by National Natural Science Foundation of China(12071165 and 62076104)Natural Science Foundation of Fujian Province(2020J01072)+2 种基金Program for Innovative Research Team in Science and Technology in Fujian Province University,Quanzhou High-Level Talents Support Plan(2017ZT012)Scientific Research Funds of Huaqiao University(605-50Y 19017,605-50Y14040)supported by Ministry of Science and Higher Education of Russian Federation(075-15-2020-787,large scientific project"Fundamentals,methods and technologies for digital monitoring and forecasting of the environmental situation on the Baikal natural territory")。
文摘This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established.
基金This work was partially supported by National Science Foundation of China(No.50265001)Guangxi Science Foundation(No.0339068).
文摘An adaptive control scheme is presented for systems with unknown hysteresis. In order to handle the case where the hysteresis output is unmeasurale, a novel model is firstly developed to describe the characteristic of hysteresis. This model is motivated by Preisach model but implemented by using neural networks ( NN) . The main advantage is that it is easily used for controller design. Then, the adaptive controller based on the proposed model is presented for a class of SISO nonlinear systems preceded by unknown hysteresis, which is estimated by the proposed model. The laws for model updating and the control laws for the neural adaptive controller are derived from Lyapunov stability theorem, therefore the semiglobal stability of the closed-loop system is guaranteed. At last, the simulation results are illustrated.
基金supported by National Natural Science Foundation of China(Nos.91016006 and 91116002)Fundamental Research Funds for the Central Universities(Nos.30420111109,30420120305 and SWJTU11ZT06)in part by a PFund from Louisiana Board of Regents
文摘The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(SVM)is proposed to capture the rate-dependent hysteresis nonlinearity.We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model.Subsequently,a two-degree-of-freedom(2DOF)H∞robust control scheme for the ratedependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator(PEA)for real-time precision trajectory tracking.Simulations and experiments on the structure verify both the efectiveness and the practicality of the proposed modeling and control methods.
基金National Natural Science Foundation of China (60534020)National Key Project for Basic Research of China (G2002cb312205-02)Key Subject Foundation of Beijing (XK100060526)
文摘To deal with the rate-dependent hysteresis presented in a magnetostrictive actuator, a new method of modeling and control is proposed. The relationship between inputs and outputs of the actuator is approximately described by a dynamic differential equation with two rate-dependent coefficients, each expressed as a polynomial of frequency. For a given frequency, the coefficients will be able to be estimated by approximating the experimental data of the outputs of the magnetostrictive actuator. Based on this model, a quasi-PID controller is designed. In the space of the coefficients and frequency, the stable domain of closed loop system with hysteresis is analyzed. The numerical simulation and experiments have born witness to the feasibility of the proposed new method.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program Funded by the Ministry of Science and TechnologyProject supported by Changwon National University,Korea
文摘A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hysteresis,which can cause serious displacement errors.Piezoelectric hysteresis is from various origins including movement of defects,grain boundary effects,and displacement of interfaces.Furthermore,because its characteristic is stochastic,it is almost impossible to predict the piezoelectric hysteresis analytically.Therefore,it was predicted phenomenologically,which means that the relationship between inputs and outputs is formulated.The typical phenomenological approach is the Rayleigh model.However,the model has the discrepancy with experiment result as the fields increase.To overcome the demerit of the Rayleigh model,a modified Rayleigh model was proposed.In the modified Rayleigh model,each coefficient should be defined differently according to the field direction due to the increase of the asymmetry in the high fields.By applying an inverse form of this modified Rayleigh model to an AFM scanner,it is proved that hysteresis can be compensated to a position error of less than 5%.This model has the merits of reducing complicated fitting procedures and saving computation time compared with the Preisach model.
基金supported by the Twelfth Five Year Research Project(No.2015syhz0023)
文摘To solve the rate-dependent hysteresis compensation problem in fast steering mirror(FSM) systems, an improved Prandtl-Ishlinskii(P-I) model is proposed in this paper. The proposed model is formulated by employing a linear density function into the STOP operator. By this way, the proposed model has a relatively simple mathematic format, which can be applied to compensate the rate-dependent hysteresis directly. Adaptive differential evolution algorithm is utilized to obtain the accurate parameters of the proposed model. A fast steering mirror control system is established to demonstrate the validity and feasibility of the improved P-I model. Comparative experiments with different input signals are performed and analyzed, and the results show that the proposed model not only suppresses the rate-dependent hysteresis effectively, but also obtains high tracking precision.
基金financial supports from the National Natural Science Foundation of China (Nos. 11872207 and 50911140286)Aeronautical Science Foundation of China (No. 20162852033)+1 种基金Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0248)China Scholarship Council (CSC, No. 201706830087)
文摘The conception of aircraft morphing wings thrives in aeronautics since the appearance of shape memory alloys(SMAs). An aircraft morphing wing device, manipulated by an SMA actuator, inherits the intrinsic nonlinear hysteresis from the SMA actuator, ending up with control disadvantages. Conventionally, systems with SMA actuators are constrained to bi-stable states to bypass the hysteresis region. Rather than retreating a morphing wing device to bi-stable states, this paper is dedicated to transcend the morphing wing device beyond the customary limit. A methodology of discrete Preisach modeling, which identifies the hysteresis of the morphing wing device, is proposed herein. An array of discrete equal-distance points is applied to the Preisach plane in order to derive the Preisach density over the partitioned unit of the Preisach plane. Discrete Preisach modeling is fulfilled by the discrete first-order reversible curve(DFORC). By utilizing the discrete Preisach model, the aircraft morphing wing device is simulated; the validity and accuracy of discrete Preisach modeling are demonstrated by contrasting the simulated outcome with experimental data of the major hysteretic loop and the wingspan-wise displacement over time; a comparison between simulation and experimental results exhibits consistency. Afterwards, a hysteresis compensation strategy put forward in this paper is implemented for quasi-linear control of the aircraft morphing wing device, which manifests a compensated shrinking hysteresis loop and attains the initiative of extending the morphing range to the intrinsic hysteretic region.
基金Supported by the Concordia University under Research Chair Grant
文摘The development of control techniques to mitigate the effects of unknown hysteresis preceding with plants has recently re-attracted significant attention. In this paper, we first give a brief review of presently developed hysteresis models and hysteresis compensating control methods.Then, with the use of the Prandtl-Ishlinskii hysteresis model, we propose a robust adaptive control scheme. The novelty is that the model of hysteresis nonlinearities is firstly fused with the available control techniques without necessarily constructing a hysteresis inverse. The global stability of the adaptive system and tracking a desired trajectory to a certain precision are achieved. Simulations performed on a nonlinear system illustrate and clarify the approach.
文摘An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme.
基金supported by the Natural Science Basic Research Program of Shaanxi Province,China(No.2019JQ-711)。
文摘A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金supported by the National Natural Science Foundation of China(No.62273316)the 111 project(No.B17040)and the Program of China Scholarship Council(No.202206410064).
文摘Smart soft dielectric elastomer actuators(SSDEAs)possess wide applications in soft robotics due to their properties similar to natural muscles,including large deformation ratio,high energy density,and fast response speed.However,the complicated asymmetric and rate-dependent hysteresis property,creep property and quadratic input property of the SSDEA pose enormous challenges to its dynamic modeling and motion control.In this paper,first,we construct the dynamic model of the SSDEA by connecting a square module,a one-sided Prandtl–Ishlinskii(OSPI)model and a linear system in series to describe the above properties.The key and innovative aspect of the dynamic modeling lies in cascading the square module in series with the OSPI model to construct the asymmetric hysteresis model.Subsequently,a PI-funnel and inverse hysteresis compensation(PIFIHC)cascade control method of the SSDEA is proposed to actualize its tracking control objective.By performing the inversion operation on the asymmetric hysteresis model,the inverse hysteresis compensation controller(IHCC)is designed to compensate the asymmetric hysteresis property and quadratic input property of the SSDEA.In addition,a PI-funnel controller is designed to cascade with the IHCC to construct the PIFIHC cascade controller to obtain a good tracking performance.Then,the stability analysis of the PIFIHC cascade control system of the SSDEA is performed to theoretically prove that the tracking error can be controlled within the performance funnel and the steady-state error converges to zero.Finally,several practical tracking control experiments of the SSDEA are conducted,and RRMSEs are less than 2.30%for all experiments.These experimental results indicate the effectiveness and feasibility of the proposed PIFIHC cascade control method of the SSDEA.
文摘This paper presents the field oriented vector control scheme for synchronous reluctance motor (SRM) drives, where current controller followed by hysteresis comparator is used. The test motor has a star-connected wound stator and a segmental rotor of the multiple barrier type with an external incremental encoder to sense rotor position. The magnetic characteristics of this motor are described using 2D finite element method, which is used firstly for rotor design of SRM. The field oriented vector control, that regulates the speed of the SRM, is provided by a quadrature axis current command developed by the speed controller. The simulation includes all realistic components of the system. This enables the calculation of currents and voltages in different parts of the voltage source inverter (VSI) and motor under transient and steady state conditions. Implementation has been done in MATLAB/Simulink. A study of hysteresis control scheme associated with current controllers has been made. Experimental results of the SRM control using TMS320F24X DSP board are presented. The speed of the SRM is successfully controlled in the constant torque region. Experimental results of closed loop speed control of the SRM are given to verify the proposed scheme.
基金funded by the Project of Liaoning Education Department (No.LJKMZ20220500)the Natural Sciences Foundation of Liaoning province (Grant No.20230157)+1 种基金the National Natural Science Foundation of China (No.21976124)the Liaoning Revitalization Talents Program (No.XLYC2007195)。
文摘Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given.
基金National Natural Science Foundation of China under Grant No.51378093 and No.91315301
文摘A structural model is significant for the verification of structural control algorithms. However, for nonlinear behavior, experiments are mostly destructive tests that are costly, and conducting repetitive structural experiments is difficult. Therefore, a repetitive structural vibration model is important for structural vibration control. In this study, a smart platform to realize different structural behaviors is developed based on the backstepping control algorithm. Lyapunov functions are used to derive the control law. Simulations show that the designed model can track the structural responses of different arbitrary linear structures very well. In addition, the proposed platform can track responses of different piecewise linear structures and desired models with various hysteresis very well. Numerical results verify the effectiveness of the proposed tracking controller through the backstepping method for the established platform.