The measurements on actual traffic have revealed the existence of meta-stable states with high flow. Such nonlinear phenomena have not been observed in the classic Nagel-Schreckenberg traffic flow model. Here we just ...The measurements on actual traffic have revealed the existence of meta-stable states with high flow. Such nonlinear phenomena have not been observed in the classic Nagel-Schreckenberg traffic flow model. Here we just add a constraint to the classic model by introducing a velocity-dependent randomization. Two typical randomization strategies are adopted in this paper. It is shown that the Matthew effect is a necessary condition to induce traffic meta-stable states, thus shedding a light on the prerequisites for the emergence of hysteresis loop in the fundamental diagrams.展开更多
文摘The measurements on actual traffic have revealed the existence of meta-stable states with high flow. Such nonlinear phenomena have not been observed in the classic Nagel-Schreckenberg traffic flow model. Here we just add a constraint to the classic model by introducing a velocity-dependent randomization. Two typical randomization strategies are adopted in this paper. It is shown that the Matthew effect is a necessary condition to induce traffic meta-stable states, thus shedding a light on the prerequisites for the emergence of hysteresis loop in the fundamental diagrams.