期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Event Detection and Identification of Influential Spreaders in Social Media Data Streams 被引量:6
1
作者 Leilei Shi Yan Wu +2 位作者 Lu Liu Xiang Sun Liang Jiang 《Big Data Mining and Analytics》 2018年第1期34-46,共13页
Microblogging, a popular social media service platform, has become a new information channel for users to receive and exchange the most up-to-date information on current events. Consequently, it is a crucial platform ... Microblogging, a popular social media service platform, has become a new information channel for users to receive and exchange the most up-to-date information on current events. Consequently, it is a crucial platform for detecting newly emerging events and for identifying influential spreaders who have the potential to actively disseminate knowledge about events through microblogs. However, traditional event detection models require human intervention to detect the number of topics to be explored, which significantly reduces the efficiency and accuracy of event detection. In addition, most existing methods focus only on event detection and are unable to identify either influential spreaders or key event-related posts, thus making it challenging to track momentous events in a timely manner. To address these problems, we propose a Hypertext-Induced Topic Search(HITS) based Topic-Decision method(TD-HITS), and a Latent Dirichlet Allocation(LDA) based Three-Step model(TS-LDA). TDHITS can automatically detect the number of topics as well as identify associated key posts in a large number of posts. TS-LDA can identify influential spreaders of hot event topics based on both post and user information.The experimental results, using a Twitter dataset, demonstrate the effectiveness of our proposed methods for both detecting events and identifying influential spreaders. 展开更多
关键词 event detection MICROBLOGGING hypertext-induced Topic Search(HITS) Latent Dirichlet Allocation(LDA) IDENTIFICATION of influential SPREADER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部