期刊文献+
共找到1,728篇文章
< 1 2 87 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Parameterized evasion strategy for hypersonic glide vehicles against two missiles based on reinforcement learning
2
作者 Zeming HAO Ran ZHANG Huifeng LI 《Chinese Journal of Aeronautics》 2025年第4期450-468,共19页
In practical combat scenarios,Hypersonic Glide Vehicles(HGV)face the challenge of evading Successive Pursuers from the Same Direction while satisfying the Homing Constraint(SPSDHC).To address this problem,this paper p... In practical combat scenarios,Hypersonic Glide Vehicles(HGV)face the challenge of evading Successive Pursuers from the Same Direction while satisfying the Homing Constraint(SPSDHC).To address this problem,this paper proposes a parameterized evasion guidance algorithm based on reinforcement learning.The three-player optimal evasion strategy is firstly analyzed and approximated by parametrization.The switching acceleration command of HGV optimal evasion strategy considering the upper limit of missile acceleration command is analyzed based on the optimal control theory.The terminal miss of HGV in the case of evading two missiles is analyzed,which means that the three-player optimal evasion strategy is a linear combination of two one-toone strategies.Then,a velocity control algorithm is proposed to increase the terminal miss by actively controlling the flight speed of the HGV based on the parametrized evasion strategy.The reinforcement learning method is used to implement the strategy in real time and a reward function is designed by deducing homing strategy for the HGV to approach the target,which ensures that the HGV satisfies the homing constraint.Experimental results demonstrate the feasibility and robustness of the proposed parameterized evasion strategy,which enables the HGV to generate maximum terminal miss and satisfy homing constraint when facing single or double missiles. 展开更多
关键词 hypersonic glide vehicle Optimal control theory Evasion strategy Three players Reinforcement learning
原文传递
Reinforcement learning based optimized backstepping control for hypersonic vehicles with disturbance observer
3
作者 Haoyu CHENG Xin LIU +2 位作者 Xiaoxi LIANG Xiaoyan ZHANG Shaoyi LI 《Chinese Journal of Aeronautics》 2025年第11期413-437,共25页
This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address com... This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address complex control challenges.The Minimal Learning Parameter(MLP)technique is applied to manage unknown nonlinear dynamics,significantly reducing the computational load usually associated with Neural Network(NN)weight updates.To improve the control system robustness,an MLP-based nonlinear disturbance observer is designed,which estimates lumped disturbances,including flexibility effects,model uncertainties,and external disruptions within the FAHVs.In parallel,the control strategy integrates reinforcement learning using an MLP-based actor-critic framework within the backstepping design to achieve both optimality and robustness.The actor performs control actions,while the critic assesses the optimal performance index function.To minimize this index function,an adaptive gradient descent method constructs both the actor and critic.Lyapunov analysis is employed to demonstrate that all signals in the closed-loop system are semiglobally uniformly ultimately bounded.Simulation results confirm that the proposed control strategy delivers high control performance,marked by improved accuracy and reduced energy consumption. 展开更多
关键词 hypersonic vehicles Minimal learning parameter Nonlinear disturbance observer Optimized backstepping control Reinforcement learning
原文传递
Longitudinal optimal analytical midcourse guidance for cruise-glide integrated hypersonic vehicles
4
作者 Xin Li Guangbin Cai +2 位作者 Hui Xu Jianwen Zhu Chaoxu Mu 《Defence Technology(防务技术)》 2025年第8期288-303,共16页
For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model f... For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis. 展开更多
关键词 Cruise-glide integrated hypersonic vehicle Optimal guidance Velocity control Costate variable Longitudinal analytical solution
在线阅读 下载PDF
A robust adaptive filtering algorithm for high-maneuvering hypersonic vehicles
5
作者 LIANG Xinru GAO Changsheng +1 位作者 JING Wuxing AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第5期1317-1334,共18页
This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated fl... This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated flight environments.Since the interacting multiple model(IMM)filtering is famous with its ability to cover the movement property of motion models,the problem is formulated as modeling the non-stationary heavy-tailed measurement noise without any prior statistics in the IMM framework.Firstly,without any prior statistics,the Gaussian-inverse Wishart distribution is embedded in the improved Pearson type-VII(PTV)distribution,which can adaptively adjust the parameters to model the non-stationary heavytailed measurement noise.Besides,degree of freedom(DOF)parameters are surrogated by the maximization of evidence lower bound(ELBO)in the variational Bayesian optimization framework instead of fixed value to handle uncertain non-Gaussian degrees.Then,this paper analytically derives fusion forms based on the maximum Versoria fusion criterion instead of the moment matching approach,which can provide a precise approximation for the PTV mixture distribution in the mixing and output steps combined with the weight Kullback-Leibler average theory.Simulation results demonstrate the superiority and robustness of the proposed algorithm in typical HGVs tracking when the measurement noise without priori statistics is non-stationary. 展开更多
关键词 hypersonic vehicle Pearson type-VII(PTV)distribution without priori statistics modeling
在线阅读 下载PDF
Adaptive Neural Control for Hypersonic Vehicle Based on Barrier Lyapunov Function
6
作者 Hewei Zhao Chengcheng Wang Jing Sun 《Journal of Beijing Institute of Technology》 2025年第6期552-565,共14页
In this paper,an adaptive neural backstepping control method based on barrier Lyapunov function is proposed for hypersonic vehicle considering full state constraints.The longitudinal dynamic of hypersonic vehicle can ... In this paper,an adaptive neural backstepping control method based on barrier Lyapunov function is proposed for hypersonic vehicle considering full state constraints.The longitudinal dynamic of hypersonic vehicle can be divided into two subsystems,i.e.,altitude subsystem and velocity subsystem and the controllers are designed with backstepping method,respectively.In the designing process,the radial basis function neural networks are used to approximate the unknown nonlinear functions of longitudinal dynamic,therefore,the accuracy requirement of hypersonic vehicle model is largely reduced.In order to handle the explosion of complexity issues occurring in the backstepping method,a tracking differentiator is introduced to calculate the differential of virtual control law.The barrier Lyapunov function is constructed to overcome the full system dynamic state constraints and an auxiliary system is designed for overcome the input state saturation issue.The stability is carried out based on Lyapunov theory,and the signals of closed-loop system established are uniformly ultimately bounded.The simulation results show that the controller designed for hypersonic vehicle can guarantee the good tracking performance. 展开更多
关键词 hypersonic vehicle barrier Lyapunov function radial basis function neural network tracking differentiator
在线阅读 下载PDF
Modeling and analysis of maneuver laws based on higher order multi-resolution dynamic mode decomposition for hypersonic glide vehicles
7
作者 Zichu Liu Yudong Hu +2 位作者 Changsheng Gao Wuxing Jing Xudong Ji 《Defence Technology(防务技术)》 2025年第6期34-47,共14页
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high... The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability. 展开更多
关键词 hypersonic glide vehicle Dynamic mode decomposition Higher order koopman assumption Manoeuvre law modeling INTERPRETABILITY
在线阅读 下载PDF
Hypersonic glide vehicle trajectory prediction based on frequency enhanced channel attention and light sampling-oriented MLP network
8
作者 Yuepeng Cai Xuebin Zhuang 《Defence Technology(防务技术)》 2025年第4期199-212,共14页
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv... Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well. 展开更多
关键词 hypersonic glide vehicle Trajectory prediction Frequency enhanced channel attention Light sampling-oriented MLP network
在线阅读 下载PDF
ADRC FRACTIONAL ORDER PID CONTROLLER DESIGN OF HYPERSONIC FLIGHT VEHICLE 被引量:10
9
作者 秦昌茂 齐乃明 +1 位作者 吕瑞 朱凯 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期240-245,共6页
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i... Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters. 展开更多
关键词 hypersonic flight vehicle active disturbance rejection controller(ADRC) fractional order PID D-decomposition method
在线阅读 下载PDF
Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles 被引量:73
10
作者 Yinhai ZHU Wei PENG +1 位作者 Ruina XU Peixue JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期1929-1953,共25页
Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodyn... Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodynamic heating, and on the other hand, combustion chamber inter walls are under extremely high temperature and heat flux. Therefore, more efficient and stable active cooling technologies are required in hypersonic vehicles, such as regenerative cooling, film cooling, and transpiration cooling, as well as their combinations. This paper presents a comprehensive literature review on three active cooling methods, i.e., regenerative cooling, film cooling, and transpiration cooling, and deeply analyzes the mechanism of each cooling method, including the fluids flow, heat transfer, and thermal cracking characteristics of different hydrocarbon fuels in regenerative cooling,the heat transfer and flow mechanism of film cooling under supersonic mainstream conditions, and the heat transfer and flow mechanism of transpiration cooling. 展开更多
关键词 Film cooling hypersonic vehicle Regenerative cooling Thermal protection Transpiration cooling
原文传递
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:32
11
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control BACKSTEPPING Control theory Design Functions hypersonic aerodynamics hypersonic vehicles Navigation Radial basis function networks Sliding mode control Uncertainty analysis vehicles
在线阅读 下载PDF
Progress in reentry trajectory planning for hypersonic vehicle 被引量:27
12
作者 Jiang Zhao Rui Zhou Xuelian Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期627-639,共13页
The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in mee... The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies. 展开更多
关键词 hypersonic vehicle reentry trajectory planning on-board planning reentry trajectory optimization footprint.
在线阅读 下载PDF
Infrared radiation characteristics of a hypersonic vehicle under time-varying angles of attack 被引量:13
13
作者 Qinglin NIU Zhichao YUAN +1 位作者 Biao CHEN Shikui DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第4期861-874,共14页
Hypersonic vehicles emit strong infrared(IR) radiation signatures that can be treated as a detecting source for object identification and routine diagnosis. This paper is aimed at examining the intrinsic radiation cha... Hypersonic vehicles emit strong infrared(IR) radiation signatures that can be treated as a detecting source for object identification and routine diagnosis. This paper is aimed at examining the intrinsic radiation characteristics of a Boost-Glide Vehicle(BGV) under the condition of various Angles of Attack(AOAs). A two-temperature model considering the thermal and chemical nonequilibrium effects is coupled with Navier-Stokes equations solved by the finite volume technique.A gas–solid conjunction heat transfer model is also added into the fluid solver to simulate the surface temperature of the vehicle. The radiative transfer equation is solved with Line of Sight(LOS)algorithm. The computational results for a Hypersonic Technology Vehicle-2(HTV-2) type vehicle show that radiances of the vehicle are strongly dependent on the surface temperature. The presence of AOA results in the significant difference of the surface temperature. Infrared radiation characteristics are also changed in intensity and spectral band due to the AOA. Simulations are performed with two time-varying AOAs. Transient results indicate that the variation of AOA does have a great effect on the infrared radiance and is closely related to observation angle, spectral band, angle size,angular velocity and time history. 展开更多
关键词 ANGLE of ATTACK Fluid-thermal interaction HTV-2 hypersonic vehicle IR radiation Surface temperature
原文传递
Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method 被引量:12
14
作者 Jingjing ZHU Xiaojun WANG +3 位作者 Haiguo ZHANG Yuwen LI Ruixing WANG Zhiping QIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第9期2095-2108,共14页
Lightweight design is important for the Thermal Protection System(TPS) of hypersonic vehicles in that it protects the inner structure from severe heating environment. However, due to the existence of uncertainties in ... Lightweight design is important for the Thermal Protection System(TPS) of hypersonic vehicles in that it protects the inner structure from severe heating environment. However, due to the existence of uncertainties in material properties and geometry, it is imperative to incorporate uncertainty analysis into the design optimization to obtain reliable results. In this paper, a six sigma robust design optimization based on Successive Response Surface Method(SRSM) is established for the TPS to improve the reliability and robustness with considering the uncertainties. The uncertain parameters related to material properties and thicknesses of insulation layers are considered and characterized by random variables following normal distributions. By employing SRSM, the values of objective function and constraints are approximated by the response surfaces to reduce computational cost. The optimization is an iterative process with response surfaces updating to find the true optimal solution. The optimization of the nose cone of hypersonic vehicle cabin is provided as an example to illustrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 hypersonic vehicle SIX SIGMA robust optimization Successive response surface Thermal protection system UNCERTAINTY
原文传递
Review of control and guidance technology on hypersonic vehicle 被引量:47
15
作者 Yibo DING Xiaokui YUE +1 位作者 Guangshan CHEN Jiashun SI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期1-18,共18页
Air-breathing hypersonic vehicle has great military and potential economic value due to its characteristics:high velocity,long range,quick response.Therefore,the development of hypersonic vehicle and its guidance and ... Air-breathing hypersonic vehicle has great military and potential economic value due to its characteristics:high velocity,long range,quick response.Therefore,the development of hypersonic vehicle and its guidance and control technology are reviewed in this paper.Firstly,the development and classification of hypersonic vehicles around the world are summarized,and the geometric configuration and mission profile of typical air-breathing hypersonic vehicle are given.Secondly,the control difficulties of air-breathing hypersonic vehicle are introduced,including integrated design of engine and fuselage,static instability,strong nonlinearity,uncertain aerodynamic parameters,etc.According to its control requirements,the control methods considering external disturbance,fault-tolerant control methods,anti-saturation methods,and prescribed performance control methods considering transient performance constraints are summarized respectively.The classification and comparison of various control methods are given,and the frontiers of theoretical development are analyzed.Finally,considering the effects of composite disturbances,the design of terminal guidance law under multiple constraints is overviewed,including guidance law with angle constraint,velocity constraint,acceleration constraint and time constraint.Similarly,the classification of guidance law design methods under different constraints,their advantages as well as the future development trend and requirements are introduced. 展开更多
关键词 Classification of hypersonic vehicles Control equipmentaerospace applications Flight profiles Guidance strategy hypersonic vehicles
原文传递
Continuous Sliding Mode Controller with Disturbance Observer for Hypersonic Vehicles 被引量:13
16
作者 Chaoxu Mu Qun Zong +1 位作者 Bailing Tian Wei Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期45-55,共11页
In this paper, a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering. The finite time disturbance observer is involved to... In this paper, a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering. The finite time disturbance observer is involved to make that the continuous sliding mode controller has the property of disturbance rejection. Due to continuous terms replacing the discontinuous term of traditional sliding mode control, switching modes of velocity and altitude firstly arrive at small regions with respect to disturbance observation errors. Switching modes keep zero and velocity and altitude asymptotically converge to their reference commands after disturbance observation errors disappear. Simulation results have proved the proposed method can guarantee the tracking of velocity and altitude with continuous sliding mode control laws, and also has the fast convergence rate and robustness. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Altitude control Controllers Disturbance rejection ERRORS hypersonic aerodynamics hypersonic vehicles Robustness (control systems) vehicles
在线阅读 下载PDF
Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles 被引量:18
17
作者 Zonglin Jiang Yunfeng Liu Guilai Han Wei Zhao Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期417-419,共3页
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shockreconstruction. The spike recasts the bow shock in front o... A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shockreconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4° attack angle. 展开更多
关键词 hypersonic vehicle Shock-reconstruction. Drag reduction Thermal protection Spike and lateral jets
在线阅读 下载PDF
Performance limitations in trajectory tracking control for air-breathing hypersonic vehicles 被引量:9
18
作者 Boyi CHEN Yanbin LIU +2 位作者 Haidong SHEN Hao LEI Yuping LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第1期167-175,共9页
An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracki... An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracking control through a trajectory design method that considers the available acceleration. Second, the basic theory of performance limitations, which is adopted to calculate the limits on control performance through the trajectory, is integrated. The openloop dynamics of air-breathing hypersonic vehicles is responsible for these limits on the control system. Comprehensive specifications on stability, tracking accuracy, and robustness are derived, and the flight envelope with constraints and control specifications is identified. Simulation results suggest that trajectory design should consider restrictions on control performance to obtain reliable solutions. 展开更多
关键词 BANDWIDTH constraints hypersonic vehicleS PERFORMANCE LIMITATIONS Robust PERFORMANCE TRAJECTORY tracking control
原文传递
Analysis of optimal initial glide conditions for hypersonic glide vehicles 被引量:12
19
作者 Yan Xiaodong Lyu Shi Tang Shuo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期217-225,共9页
Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unp... Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unpowered, the initial glide conditions (IGCs) are crucial for flight. This paper aims to find the optimal IGCs to improve the maneuverability and decrease the con- straints of HGVs. By considering the IGCs as experiment factors, we design an orthogonal table with three factors that have five levels each by using the orthogonal experimental design method. Thereafter, we apply the Gauss pseudospectral method to perform glide trajectory optimization by using each test of the orthogonal table as the initial condition. Based on the analytic hierarchy process, an integrated indicator is established to evaluate the IGCs, which synthesizes the indexes of the maneuverability and constraints. The integrated indicator is calculated from the trajectory opti- mization results. Finally, optimal IGCs and valuable conclusions are obtained by using range anal- ysis, variance analysis, and regression analysis on the integrated indicator. 展开更多
关键词 Analytic hierarchy process hypersonic glide vehicles Optimization Orthogonat experimentaldesign TRAJECTORY
原文传递
A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD 被引量:12
20
作者 Chen Xin Liu Li +1 位作者 Long Teng Yue Zhenjiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1328-1342,共15页
Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aim... Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency. 展开更多
关键词 hypersonic vehicles Aerothermodynamic Reduced order model(ROM) Surrogate Proper orthogonaldecomposition (POD)
原文传递
上一页 1 2 87 下一页 到第
使用帮助 返回顶部