In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary ...In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary integer larger than or equal to 3. They share most optimal properties as those of the Bézier basis and B-Spline basis respectively and can represent exactly some remarkable curves and surfaces such as the hyperbola, catenary, hyperbolic spiral and the hyperbolic paraboloid. The generation of tensor product surfaces of the AH B-Spline basis have two forms: AH B-Spline surface and AH T-Spline surface.展开更多
This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity,thermal radiation,and coupled heat andmass transfer effects.Amodified twost...This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity,thermal radiation,and coupled heat andmass transfer effects.Amodified twostage Exponential Time Integrator is introduced for temporal discretization,providing second-order accuracy in time.A compact finite difference method is employed for spatial discretization,yielding sixth-order accuracy at most grid points.The proposed framework ensures numerical stability and convergence when solving stiff,nonlinear parabolic systems arising in fluid flow and heat transfer problems.The novelty of the work lies in combining exponential integrator schemes with compact high-order spatial discretization,enabling accurate and efficient simulations of tangent hyperbolic fluids under complex boundary conditions,such as oscillatory plates and varying thermal conductivity.This approach addresses limitations of classical Euler,Runge–Kutta,and spectral methods by significantly reducing numerical errors(up to 45%)and computational cost.Comprehensive parametric studies demonstrate how viscous dissipation,chemical reactions,the Weissenberg number,and the Hartmann number influence flow behaviour,heat transfer,and mass transfer.Notably,heat transfer rates increase by 18.6%with stronger viscous dissipation,while mass transfer rates rise by 21.3%with more intense chemical reactions.The real-world relevance of the study is underscored by its direct applications in polymer processing,heat exchanger design,radiative thermal management in aerospace,and biofluid transport in biomedical systems.The proposed scheme thus provides a robust numerical framework that not only advances the mathematical modelling of non-Newtonian fluid flows but also offers practical insights for engineering systems involving tangent hyperbolic fluids.展开更多
In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic...In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.展开更多
A Luttinger liquid is a theoretical model describing interacting electrons in one-dimensional(1D)conductors.While individual 1D conductors have shown interesting Luttinger-liquid behaviors such as spin-charge separati...A Luttinger liquid is a theoretical model describing interacting electrons in one-dimensional(1D)conductors.While individual 1D conductors have shown interesting Luttinger-liquid behaviors such as spin-charge separation and power-law spectral density,the more interesting phenomena predicted in coupled Luttinger liquids of neighboring 1D conductors have been rarely observed due to the difficulty in creating such structures.Recently,we have successfully grown close-packed carbon nanotube(CNT)arrays with uniform chirality,providing an ideal material system for studying the coupled Luttinger liquids.Here,we report on the observation of tunable hyperbolic plasmons in the coupled Luttinger liquids of CNT arrays using scanning near-field optical microscopy.These hyperbolic plasmons,resulting from the conductivity anisotropy in the CNT array,exhibit strong spatial confinement,in situ tunability,and a wide spectral range.Despite their hyperbolic wavefronts,the plasmon propagation in the axial direction still adheres to the Luttinger-liquid theory.Our work not only demonstrates a fascinating phenomenon in coupled Luttinger liquids for fundamental physics exploration,but also provides a highly confined and in situ tunable hyperbolic plasmon in close-packed CNT arrays for future nanophotonic devices and circuits.展开更多
In this paper,we consider the initial boundary value problem for the 2-D hyperbolic viscous Cahn-Hilliard equation.Firstly,we prove the existence and uniqueness of the local solution by the Galerkin method and contrac...In this paper,we consider the initial boundary value problem for the 2-D hyperbolic viscous Cahn-Hilliard equation.Firstly,we prove the existence and uniqueness of the local solution by the Galerkin method and contraction mapping principle.Then,using the potential well theory,we study the global well-posedness of the solution with initial data at different levels of initial energy,i.e.,subcritical initial energy,critical initial energy and arbitrary positive initial energy.For subcritical initial energy,we prove the global existence,asymptotic behavior and finite time blowup of the solution.Moreover,we extend these results to the critical initial energy using the scaling technique.For arbitrary positive initial energy,including the sup-critical initial energy,we obtain the sufficient conditions for finite time blow-up of the solution.As a further study for estimating the blowup time,we give a unified expression of the lower bound of blowup time for all three initial energy levels and estimate the upper bound of blowup time for subcritical and critical initial energy.展开更多
For multidimensional first order semilinear hyperbolic systems of diagonal form without self-interaction,we show the global nonlinear stability of traveling wave solutions.
Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic fu...Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic function-like objective functions.Specifically,a series of generalized new SAF algorithms are proposed by introducing the q-deformed hyperbolic function as the cost function,named SAF-qDHSI,SAF-qDHCO,SAFqDHTA&SAF-qDHSE algorithms,respectively.Then,the proposed algorithm is theoretically demonstrated with detailed mean convergence and computational complexity analysis;secondly,the effect of different q values on the performance of the new algorithm is verified through data simulation;the new algorithm still has better performance under the interference of Gaussian noise and non-Gaussian noise even when facing the system mutation;finally,the new algorithm is verified through the measured engineering data,and the results show that the new algorithm has better convergence and robustness compared with the existing algorithm.In conclusion,the generalized algorithm based on the new cost function proposed in this paper is more effective in nonlinear system identification.展开更多
In this paper,we construct new examples of hyperbolic metasurfaces in CP^(3) and CP^(4),and discusses the existence of solutions for a class of Fermat type functional equations.
This paper considers the updating problem of the hyperbolic matrix factorizations. The sufficient conditions for the existence of the updated hyperbolic matrix factorizations are first provided. Then, some differentia...This paper considers the updating problem of the hyperbolic matrix factorizations. The sufficient conditions for the existence of the updated hyperbolic matrix factorizations are first provided. Then, some differential inequalities and first order perturbation expansions for the updated hyperbolic factors are derived. These results generalize the corresponding ones for the updating problem of the classical QR factorization obtained by Jiguang SUN.展开更多
In this paper, oscillatory properties of solutions of certain nonlinear hyperbolic partial differential equations are investigated and a series of sufficient conditions for oscillations of the equations are establishe...In this paper, oscillatory properties of solutions of certain nonlinear hyperbolic partial differential equations are investigated and a series of sufficient conditions for oscillations of the equations are established. The results fully indicate that the oscillations are caused by delay.展开更多
This paper presents a high-order discontinuous Galerkin(DG)finite-element method to solve the barotropic version of the conservative symmetric hyperbolic and thermodynamically compatible(SHTC)model of compressible two...This paper presents a high-order discontinuous Galerkin(DG)finite-element method to solve the barotropic version of the conservative symmetric hyperbolic and thermodynamically compatible(SHTC)model of compressible two-phase flow,introduced by Romenski et al.in[59,62],in multiple space dimensions.In the absence of algebraic source terms,the model is endowed with a curl constraint on the relative velocity field.In this paper,the hyperbolicity of the system is studied for the first time in the multidimensional case,showing that the original model is only weakly hyperbolic in multiple space dimensions.To restore the strong hyperbolicity,two different methodologies are used:(i)the explicit symmetrization of the system,which can be achieved by adding terms that contain linear combinations of the curl involution,similar to the Godunov-Powell terms in the MHD equations;(ii)the use of the hyperbolic generalized Lagrangian multiplier(GLM)curl-cleaning approach forwarded.The PDE system is solved using a high-order ADER-DG method with a posteriori subcell finite-volume limiter to deal with shock waves and the steep gradients in the volume fraction commonly appearing in the solutions of this type of model.To illustrate the performance of the method,several different test cases and benchmark problems have been run,showing the high order of the scheme and the good agreement when compared to reference solutions computed with other well-known methods.展开更多
In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the followin...In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1.展开更多
We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute t...We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.展开更多
In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for app...In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficien...In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.展开更多
The quintessence of hyperbolic geometry is transferred to a transfinite Cantorian-fractal setting in the present work. Starting from the building block of E-infinity Cantorian spacetime theory, namely a quantum pre-pa...The quintessence of hyperbolic geometry is transferred to a transfinite Cantorian-fractal setting in the present work. Starting from the building block of E-infinity Cantorian spacetime theory, namely a quantum pre-particle zero set as a core and a quantum pre-wave empty set as cobordism or surface of the core, we connect the interaction of two such self similar units to a compact four dimensional manifold and a corresponding holographic boundary akin to the compactified Klein modular curve with SL(2,7) symmetry. Based on this model in conjunction with a 4D compact hy- perbolic manifold M(4) and the associated general theory, the so obtained ordinary and dark en- ergy density of the cosmos is found to be in complete agreement with previous analysis as well as cosmic measurements and observations such as WMAP and Type 1a supernova.展开更多
In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamicall...In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.展开更多
In this paper, we prove L^P-boundedness of hyperbolic singular integral operators for kernels satisfying weakened regularity conditions, where 1 〈 p 〈 ∞. This extends previous results of A.R. Nahmod.
基金Projects supported by the National Natural Science Foundation of China (No. 10371110) and the National Basic Research Program (973) of China (No.G2002CB312101)
文摘In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary integer larger than or equal to 3. They share most optimal properties as those of the Bézier basis and B-Spline basis respectively and can represent exactly some remarkable curves and surfaces such as the hyperbola, catenary, hyperbolic spiral and the hyperbolic paraboloid. The generation of tensor product surfaces of the AH B-Spline basis have two forms: AH B-Spline surface and AH T-Spline surface.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2503).
文摘This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity,thermal radiation,and coupled heat andmass transfer effects.Amodified twostage Exponential Time Integrator is introduced for temporal discretization,providing second-order accuracy in time.A compact finite difference method is employed for spatial discretization,yielding sixth-order accuracy at most grid points.The proposed framework ensures numerical stability and convergence when solving stiff,nonlinear parabolic systems arising in fluid flow and heat transfer problems.The novelty of the work lies in combining exponential integrator schemes with compact high-order spatial discretization,enabling accurate and efficient simulations of tangent hyperbolic fluids under complex boundary conditions,such as oscillatory plates and varying thermal conductivity.This approach addresses limitations of classical Euler,Runge–Kutta,and spectral methods by significantly reducing numerical errors(up to 45%)and computational cost.Comprehensive parametric studies demonstrate how viscous dissipation,chemical reactions,the Weissenberg number,and the Hartmann number influence flow behaviour,heat transfer,and mass transfer.Notably,heat transfer rates increase by 18.6%with stronger viscous dissipation,while mass transfer rates rise by 21.3%with more intense chemical reactions.The real-world relevance of the study is underscored by its direct applications in polymer processing,heat exchanger design,radiative thermal management in aerospace,and biofluid transport in biomedical systems.The proposed scheme thus provides a robust numerical framework that not only advances the mathematical modelling of non-Newtonian fluid flows but also offers practical insights for engineering systems involving tangent hyperbolic fluids.
文摘In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.
基金supported by the National Key R&D Program of China(Grant No.2021YFA1202902)the National Natural Science Foundation of China(Grant Nos.12374292 and 12074244)B.L.acknowledges support from the Development Scholarship for Outstanding Ph.D.of Shanghai Jiao Tong University.J.K.acknowledges support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.NRF-RS-2024-00454528).
文摘A Luttinger liquid is a theoretical model describing interacting electrons in one-dimensional(1D)conductors.While individual 1D conductors have shown interesting Luttinger-liquid behaviors such as spin-charge separation and power-law spectral density,the more interesting phenomena predicted in coupled Luttinger liquids of neighboring 1D conductors have been rarely observed due to the difficulty in creating such structures.Recently,we have successfully grown close-packed carbon nanotube(CNT)arrays with uniform chirality,providing an ideal material system for studying the coupled Luttinger liquids.Here,we report on the observation of tunable hyperbolic plasmons in the coupled Luttinger liquids of CNT arrays using scanning near-field optical microscopy.These hyperbolic plasmons,resulting from the conductivity anisotropy in the CNT array,exhibit strong spatial confinement,in situ tunability,and a wide spectral range.Despite their hyperbolic wavefronts,the plasmon propagation in the axial direction still adheres to the Luttinger-liquid theory.Our work not only demonstrates a fascinating phenomenon in coupled Luttinger liquids for fundamental physics exploration,but also provides a highly confined and in situ tunable hyperbolic plasmon in close-packed CNT arrays for future nanophotonic devices and circuits.
基金supported by the NSFC(12271122)the Fundamental Research Funds for the Central Universities.Han’s research was supported by the Fundamental Research Funds for the Central Universities(3072023GIP2401).
文摘In this paper,we consider the initial boundary value problem for the 2-D hyperbolic viscous Cahn-Hilliard equation.Firstly,we prove the existence and uniqueness of the local solution by the Galerkin method and contraction mapping principle.Then,using the potential well theory,we study the global well-posedness of the solution with initial data at different levels of initial energy,i.e.,subcritical initial energy,critical initial energy and arbitrary positive initial energy.For subcritical initial energy,we prove the global existence,asymptotic behavior and finite time blowup of the solution.Moreover,we extend these results to the critical initial energy using the scaling technique.For arbitrary positive initial energy,including the sup-critical initial energy,we obtain the sufficient conditions for finite time blow-up of the solution.As a further study for estimating the blowup time,we give a unified expression of the lower bound of blowup time for all three initial energy levels and estimate the upper bound of blowup time for subcritical and critical initial energy.
基金supported by the National Natural Science Foundation of China(12371217)the Fundamental Research Funds for the Central Universities(2232022D-27).
文摘For multidimensional first order semilinear hyperbolic systems of diagonal form without self-interaction,we show the global nonlinear stability of traveling wave solutions.
基金financially supported by the National Natural Science Foundation of China (8225041038)the Sichuan Science and Technology Program (23NSFSC2916)the Fundamental Research Funds for the Central Universities, Southwest Minzu University (ZYN2024077)
文摘Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic function-like objective functions.Specifically,a series of generalized new SAF algorithms are proposed by introducing the q-deformed hyperbolic function as the cost function,named SAF-qDHSI,SAF-qDHCO,SAFqDHTA&SAF-qDHSE algorithms,respectively.Then,the proposed algorithm is theoretically demonstrated with detailed mean convergence and computational complexity analysis;secondly,the effect of different q values on the performance of the new algorithm is verified through data simulation;the new algorithm still has better performance under the interference of Gaussian noise and non-Gaussian noise even when facing the system mutation;finally,the new algorithm is verified through the measured engineering data,and the results show that the new algorithm has better convergence and robustness compared with the existing algorithm.In conclusion,the generalized algorithm based on the new cost function proposed in this paper is more effective in nonlinear system identification.
基金Supported by the National Natural Foundation of China(Grant No.12361028)the Foundation of Education Department of Jiangxi(Grant Nos.GJJ212305 and GJJ2202228)。
文摘In this paper,we construct new examples of hyperbolic metasurfaces in CP^(3) and CP^(4),and discusses the existence of solutions for a class of Fermat type functional equations.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1120150711171361)the Natural Science Foundation Project of CQ CSTC(Grant No.2010BB9215)
文摘This paper considers the updating problem of the hyperbolic matrix factorizations. The sufficient conditions for the existence of the updated hyperbolic matrix factorizations are first provided. Then, some differential inequalities and first order perturbation expansions for the updated hyperbolic factors are derived. These results generalize the corresponding ones for the updating problem of the classical QR factorization obtained by Jiguang SUN.
文摘In this paper, oscillatory properties of solutions of certain nonlinear hyperbolic partial differential equations are investigated and a series of sufficient conditions for oscillations of the equations are established. The results fully indicate that the oscillations are caused by delay.
基金Initiative 2018–2027 attributed to DICAM of the University of Trento(grant L.232/2016)the PRIN 2022 project High-order structure-preserving semi-implicit schemes for hyperbolic equations and by the European Union-Next GenerationEU(PNRR,Spoke 7 CN HPC).
文摘This paper presents a high-order discontinuous Galerkin(DG)finite-element method to solve the barotropic version of the conservative symmetric hyperbolic and thermodynamically compatible(SHTC)model of compressible two-phase flow,introduced by Romenski et al.in[59,62],in multiple space dimensions.In the absence of algebraic source terms,the model is endowed with a curl constraint on the relative velocity field.In this paper,the hyperbolicity of the system is studied for the first time in the multidimensional case,showing that the original model is only weakly hyperbolic in multiple space dimensions.To restore the strong hyperbolicity,two different methodologies are used:(i)the explicit symmetrization of the system,which can be achieved by adding terms that contain linear combinations of the curl involution,similar to the Godunov-Powell terms in the MHD equations;(ii)the use of the hyperbolic generalized Lagrangian multiplier(GLM)curl-cleaning approach forwarded.The PDE system is solved using a high-order ADER-DG method with a posteriori subcell finite-volume limiter to deal with shock waves and the steep gradients in the volume fraction commonly appearing in the solutions of this type of model.To illustrate the performance of the method,several different test cases and benchmark problems have been run,showing the high order of the scheme and the good agreement when compared to reference solutions computed with other well-known methods.
基金Kong and Wang was supported in part by the NSF of China (10671124)the NCET of China (NCET-05-0390)the work of Liu was supported in part by the NSF of China
文摘In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1.
文摘We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020LLZ004)the National Natural Science Foundation of China (Grant No.52106099),the National Natural Science Foundation of China (Grant No.52076056)the Fundamental Research Funds for the Central Universities (Grant No.AUGA5710094020)。
文摘In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.
文摘In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.
文摘The quintessence of hyperbolic geometry is transferred to a transfinite Cantorian-fractal setting in the present work. Starting from the building block of E-infinity Cantorian spacetime theory, namely a quantum pre-particle zero set as a core and a quantum pre-wave empty set as cobordism or surface of the core, we connect the interaction of two such self similar units to a compact four dimensional manifold and a corresponding holographic boundary akin to the compactified Klein modular curve with SL(2,7) symmetry. Based on this model in conjunction with a 4D compact hy- perbolic manifold M(4) and the associated general theory, the so obtained ordinary and dark en- ergy density of the cosmos is found to be in complete agreement with previous analysis as well as cosmic measurements and observations such as WMAP and Type 1a supernova.
文摘In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.
基金The NNSF (10171111) of Chinathe Foundation of Zhongshan University Advanced Research Center
文摘In this paper, we prove L^P-boundedness of hyperbolic singular integral operators for kernels satisfying weakened regularity conditions, where 1 〈 p 〈 ∞. This extends previous results of A.R. Nahmod.