期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于多图神经网络和图对比学习的科学文献摘要模型
1
作者 赵红燕 郭力华 +1 位作者 刘春霞 王日云 《计算机应用》 北大核心 2025年第12期3820-3828,共9页
生成面临句间关系的捕捉、长距离依赖及文档信息的高效编码与提取等难题,一直是自然语言处理领域的一个难点任务。同时,科学文献通常包含多个章节和段落,具有复杂的层次结构,使科学文献的摘要生成任务更具挑战性。针对以上问题,提出一... 生成面临句间关系的捕捉、长距离依赖及文档信息的高效编码与提取等难题,一直是自然语言处理领域的一个难点任务。同时,科学文献通常包含多个章节和段落,具有复杂的层次结构,使科学文献的摘要生成任务更具挑战性。针对以上问题,提出一种基于多图神经网络(GNN)和图对比学习(GCL)的科学文献摘要模型(MGCSum)。首先,对于输入的文档,通过同构GNN和异构GNN分别建模句内与句间关系,以生成初始句子表示;其次,将这些句子表示馈送到一个多头超图注意网络(HGAT),并在其中利用自注意机制充分捕捉节点和边之间的关系,从而进一步更新和学习句间的表示;再次,引入GCL模块增强全局主题感知,从而提升句子表示的语义一致性和区分度;最后,采用多层感知器(MLP)和归一化层计算一个得分,用于判断句子是否应被选为摘要。在PubMed和ArXiv数据集上的实验结果表明,MGCSum模型的表现优于多数基线模型。具体地,在PubMed数据集上,MGCSum模型的ROUGE-1、ROUGE-2和ROUGE-L分别达到了48.97%、23.15%和44.09%,相比现有的先进模型HAESum(Hierarchical Attention graph for Extractive document Summarization)分别提高了0.20、0.71和0.26个百分点。可见,通过结合多GNN和GCL,MGCSum模型能够更有效地捕捉文献的层次结构信息和句间关系,提升了摘要生成的准确性和语义一致性,展现了它在科学文献摘要生成任务中的优势。 展开更多
关键词 科学文献摘要 抽取式摘要 图神经网络 超图注意网络 图对比学习
在线阅读 下载PDF
基于项目级和类别级双混合超图的会话推荐
2
作者 李建伏 张丹 《计算机工程与设计》 北大核心 2025年第6期1758-1765,共8页
为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节... 为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节点的表示;引入引导注意力机制融合两种节点表示;用更新后的节点嵌入学习会话表示,计算每个节点的点击概率并推荐概率最大的k个项目。实验结果表明,DF-MHCN方法相对于现有的会话推荐方法具有较高的精度。 展开更多
关键词 基于会话的推荐 混合超图 项目级混合超图 类别级混合超图 超图卷积网络 混合超图卷积网络 引导注意力机制
在线阅读 下载PDF
结合超图学习的多注意力机制新闻推荐方法
3
作者 孟祥福 王琬淳 +1 位作者 张雨萌 樊文懿 《计算机科学》 北大核心 2025年第S2期657-663,共7页
在个性化新闻推荐中,图结构常被用来建立用户与新闻之间的交互关系。然而,普通图结构大多忽略了被点击新闻之间的高阶关联信息。此外,现有方法大多仅使用单一向量学习用户兴趣表示与候选新闻表示,导致建模不充分。针对上述问题,提出了... 在个性化新闻推荐中,图结构常被用来建立用户与新闻之间的交互关系。然而,普通图结构大多忽略了被点击新闻之间的高阶关联信息。此外,现有方法大多仅使用单一向量学习用户兴趣表示与候选新闻表示,导致建模不充分。针对上述问题,提出了结合超图学习的多注意力机制新闻推荐模型。首先,构建候选新闻超图,通过超图注意力网络的学习捕获候选新闻与其语义相似新闻的高阶相关性,丰富候选新闻语义;然后,构建新闻-主题超图用于建模用户兴趣,采用包含多种注意力机制的神经网络架构挖掘深层的用户细粒度兴趣特征;最后,通过引入激活单元,结合候选新闻特征进一步提取用户兴趣,从而提高推荐准确性。在MIND-small和MIND-large数据集上进行的大量实验,验证了所提方法的有效性。 展开更多
关键词 推荐系统 个性化新闻推荐 语义增强 用户兴趣 超图学习 超图注意力网络 注意力机制
在线阅读 下载PDF
结合多尺度注意力和动态构建的非均匀超图聚类模型 被引量:1
4
作者 朱峰冉 王慧颖 +2 位作者 林晓丽 李全鑫 庞俊 《计算机工程与应用》 北大核心 2025年第2期200-207,共8页
单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via at... 单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via attentive hypergraph neural network)虽然较好地学习了非均匀超图的关系信息,但仍存在两点不足:(1)对于局部关系信息的挖掘不足;(2)忽略了隐藏的高阶关系。因此,提出一种基于多尺度注意力和动态超图构建的非均匀超图聚类模型MADC(non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)。一方面,使用多尺度注意力充分学习了超边中节点与节点之间的局部关系信息;另一方面,采用动态构建挖掘隐藏的高阶关系,进一步丰富了超图特征嵌入。真实数据集上的大量实验结果验证了MADC模型在非均匀超图聚类上的聚类准确率(accuracy,ACC)、标准互信息(normalized mutual information,NMI)和调整兰德指数(adjusted Rand index,ARI)均优于CIAH等所有Baseline方法。 展开更多
关键词 非均匀超图 超图聚类 超图神经网络 多尺度注意力
在线阅读 下载PDF
结合多尺度注意力和自训练的超图聚类方法 被引量:1
5
作者 刘志成 王慧颖 +4 位作者 林晓丽 朱峰冉 郭宇恒 闫炳鑫 庞俊 《小型微型计算机系统》 北大核心 2025年第9期2066-2074,共9页
单个较大的非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得簇内节点越相似越好,簇间节点越不相似越好,具有广泛的应用前景.目前最优的基于超图神经网络的非均匀超图聚类模型MADC(Non-uniform hypergraph clustering combin... 单个较大的非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得簇内节点越相似越好,簇间节点越不相似越好,具有广泛的应用前景.目前最优的基于超图神经网络的非均匀超图聚类模型MADC(Non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)仍存在不足:超图特征嵌入的学习效率不高.针对这个问题,提出了一种基于多尺度注意力和自训练网络的非均匀超图聚类模型STHC(Self-Training non-uniform Hypergraph Clustering).STHC模型采用并行的多尺度注意力网络学习超图特征嵌入,以提高其学习效率.此外,该模型还构造自训练网络,联合优化超图特征嵌入和超图聚类结果,以进一步得到更好的超图聚类结果.STHC模型在真实数据集上的大量实验结果验证了其在非均匀超图聚类上的聚类准确率(Accuracy,ACC)、标准互信息(Normalized Mutual Information,NMI)和调整兰德指数(Adjusted Rand Index,ARI)均优于所有对比方法. 展开更多
关键词 非均匀超图 聚类 自训练网络 多尺度注意力
在线阅读 下载PDF
基于异构图注意力网络的实体对齐
6
作者 孙琛琛 金钰媛 +2 位作者 申德荣 聂铁铮 寇月 《软件学报》 北大核心 2025年第11期5197-5212,共16页
实体对齐(entity alignment, EA)旨在寻找不同知识图谱(knowledge graph, KG)中等价实体.目前,基于嵌入的EA方法存在以下局限性.首先, KG中的异构结构没有完全建模.其次,文本信息的使用受限于词嵌入.第三,对齐推理算法缺乏探索.针对上... 实体对齐(entity alignment, EA)旨在寻找不同知识图谱(knowledge graph, KG)中等价实体.目前,基于嵌入的EA方法存在以下局限性.首先, KG中的异构结构没有完全建模.其次,文本信息的使用受限于词嵌入.第三,对齐推理算法缺乏探索.针对上述限制,提出基于异构图注意力网络的实体对齐方法 (heterogeneous graph attention network for entity alignment, HGAT-EA). HGAT-EA包括两个通道,一个用于学习结构嵌入,另一个用于学习字符级语义嵌入.第1个通道采用异构图注意力网络(heterogeneous graph attention network, HGAT). HGAT充分利用了异构结构和关系三元组来学习实体嵌入.第2个通道是利用字符级字面量来学习字符级语义嵌入.HGAT-EA通过多通道考虑多个视图,并通过HGAT充分利用异构结构. HGAT-EA考虑了3种不同的对齐推理算法.实验结果证明了该方法的有效性,进一步结合实验结果对HGAT-EA的不同组件进行详细分析,并给出相应的结论. 展开更多
关键词 实体对齐 知识图谱融合 异构图注意力网络 表示学习 数据集成
在线阅读 下载PDF
融合自适应超图的自监督知识感知推荐模型
7
作者 周家旋 柳先辉 +2 位作者 赵晓东 侯文龙 赵卫东 《计算机科学与探索》 北大核心 2025年第5期1217-1229,共13页
为缓解传统协同过滤推荐系统存在的冷启动问题,知识图谱作为一种辅助知识被引入到推荐系统中。然而,现有的知识图谱推荐模型在充分地建模高阶相互作用方面存在局限性,难以捕获来自高阶邻居的重要信息。此外,监督信号的稀疏性问题也影响... 为缓解传统协同过滤推荐系统存在的冷启动问题,知识图谱作为一种辅助知识被引入到推荐系统中。然而,现有的知识图谱推荐模型在充分地建模高阶相互作用方面存在局限性,难以捕获来自高阶邻居的重要信息。此外,监督信号的稀疏性问题也影响着推荐系统性能。为了解决上述问题,提出一种融合自适应超图的自监督知识感知推荐模型。该模型使用混合图卷积网络共同学习交互图中低阶交互嵌入与自适应超图中高阶交互嵌入;使用关系感知图注意网络挖掘知识图谱中用户与物品丰富的知识信息;模型在这三种视图基础上构建对比学习任务,通过引入自监督信号来缓解交互数据的稀疏性问题;将三种嵌入相结合,用于后续的推荐预测。该模型在多个公开数据集上与KGAT、KGIN、KACL等基准模型进行了对比实验,与7个对比模型中推荐性能最好的模型相比,在MovieLens数据集上,Recall@20提升了1.22%,NDCG@20提升了1.17%;在Yelp2018数据集上,Recall@20提升了1.41%,NDCG@20提升了1.60%。实验结果显示该模型的推荐性能优于其他基准模型。 展开更多
关键词 推荐系统 知识图谱 自适应超图 自监督学习 关系感知图注意网络
在线阅读 下载PDF
基于分级注意力网络和多层对比学习的社交推荐
8
作者 张丽杰 王绍卿 +1 位作者 张尧 孙福振 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期133-148,共16页
将社交关系融入推荐系统中,能有效提高推荐质量。然而现实世界中用户的交互数据是稀疏和复杂的,如何更好地利用社交信息是关键问题。现有社交推荐模型没有充分探索高阶好友的影响,而且忽略了用户间的关系强度和不同种类的关系对用户的影... 将社交关系融入推荐系统中,能有效提高推荐质量。然而现实世界中用户的交互数据是稀疏和复杂的,如何更好地利用社交信息是关键问题。现有社交推荐模型没有充分探索高阶好友的影响,而且忽略了用户间的关系强度和不同种类的关系对用户的影响,导致推荐性能不佳。为了解决上述问题,本文提出一个基于分级注意力网络和层次化对比学习的社交推荐模型。具体来说,首先,依据用户间不同关系构建用户级超图,扩大节点聚合的感知范围,加深模型深度。然后,设计多级注意力网络更好地捕捉用户交互数据之间的关系和重要性,其中,视图级自注意力机制捕获好友对用户的影响以及项目间的关联程度,通道级注意力自适应地调整不同种类的关系对用户的影响。同时,引入层次化对比学习对数据进行增强,包括视图间和跨视图的第一层对比学习和针对高阶关系的第二层对比学习,多维度捕获数据的细微差距和高层次的抽象特征。最后,将所提出的模型在4个公开基准数据集上进行评估,结果表明本文模型Precision、Recall、NDCG较其他最优基线模型分别提升7.61%、11.05%、10.69%,验证了本文模型的有效性。 展开更多
关键词 社交推荐 注意力网络 超图学习 对比学习 推荐系统
在线阅读 下载PDF
融合地理和时空信息的对比兴趣点推荐方法 被引量:2
9
作者 闵昭浩 张䶮 《计算机工程与设计》 北大核心 2025年第2期368-375,共8页
针对兴趣点推荐中无法精准捕捉POI之间地理影响和高效学习用户-兴趣点(POI)交互行为动态表示的问题,提出一种融合地理和时空信息的对比兴趣点推荐方法(IGST-CL)。采用地理插值采样策略来缓解数据不平衡问题,利用一种动态消息传播机制的... 针对兴趣点推荐中无法精准捕捉POI之间地理影响和高效学习用户-兴趣点(POI)交互行为动态表示的问题,提出一种融合地理和时空信息的对比兴趣点推荐方法(IGST-CL)。采用地理插值采样策略来缓解数据不平衡问题,利用一种动态消息传播机制的图卷积网络精准捕获地理影响。采用一种基于正余弦时间函数的时间注意力机制和超图网络联合学习用户-POI交互行为的动态表示。采用对比学习策略进一步增强模型性能。基于多任务学习方法自适应融合上述3个任务推断用户偏好。基于多个基准数据集的实验分析验证了IGST-CL模型相比其它主流兴趣点算法的优越性。 展开更多
关键词 兴趣点 超图卷积网络 时间注意力 消息传播 数据不平衡 正余弦函数 对比学习
在线阅读 下载PDF
结合GAT与卷积神经网络的知识超图链接预测
10
作者 庞俊 马志芬 +1 位作者 林晓丽 王蒙湘 《计算机工程与应用》 北大核心 2025年第9期194-201,共8页
知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,... 知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,缺乏对关系事实之间关联特征的表示学习。针对以上问题,提出了一种基于图注意力网络与卷积神经网络的链接预测方法(knowledge prediction based on GAT and convolutional neural network,HPGC)。一方面,采用改进的卷积网络(convolutional neural network,CNN)提取知识超图中节点实体表示的局部特征;另一方面,使用改进的GAT对节点和关系进行注意力建模,捕获节点之间的全局特征关系,并将两者进行融合,从而获取关系事实更全面的邻域结构,丰富超图关系事实的语义表示。此外,针对HPGC的GAT层输出矢量问题,引入多层感知机(multilayer perceptron,MLP)和正则化技术,提高模型训练的泛化能力。真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。 展开更多
关键词 知识超图 链接预测 卷积神经网络 注意力机制
在线阅读 下载PDF
多源特征融合增强的虚假新闻检测方法
11
作者 胡泽 陈志南 杨宏宇 《电子与信息学报》 北大核心 2025年第8期2919-2934,共16页
针对现有虚假新闻检测方法在提取和利用新闻多层次特征及捕获新闻传播高阶结构特征方面的局限性,该文提出一种多源特征融合增强(MSFFE)的虚假新闻检测方法。该方法利用多层次注意力机制,从结构、时序和内容3个维度提取新闻特征:首先,通... 针对现有虚假新闻检测方法在提取和利用新闻多层次特征及捕获新闻传播高阶结构特征方面的局限性,该文提出一种多源特征融合增强(MSFFE)的虚假新闻检测方法。该方法利用多层次注意力机制,从结构、时序和内容3个维度提取新闻特征:首先,通过增强型超图神经网络提取新闻传播的结构特征;其次,利用多尺度时序模块捕获新闻传播的时序特征;最后,采用多头自注意力机制提取新闻内容特征。特别地,该方法设计了一种特征融合门控单元,用于动态调整不同特征维度的权重,从而实现多源异构特征的高效融合。在公开数据集Politifact和Gossipcop上的实验结果显示,该方法的检测性能较UPFD,HGNN,RTRUST(State-of-the-Art)等近年的基线方法有所提升。其中,与最先进的方法相比较,在Politifact数据集上,准确率提升了3.64%,F1分数提升了3.41%;在Gossipcop数据集上,准确率提升了0.55%,F1分数提升了0.56%。这些实验结果表明,该方法能够有效检测虚假新闻,为虚假新闻检测领域提供了新思路和技术支撑。 展开更多
关键词 虚假新闻检测 超图 图神经网络 注意力机制 多特征融合
在线阅读 下载PDF
基于多元实体对齐的视觉-语言多模态预训练
12
作者 李登 武阿明 韩亚洪 《软件学报》 北大核心 2025年第11期5118-5133,共16页
视觉-语言预训练(visual-language pre-training,VLP)旨在通过在大规模图像-文本多模态数据集上进行学习得到强大的多模态表示.多模态特征融合、对齐是多模态模型训练的关键挑战.现有的大多数视觉-语言预训练模型对于多模态特征融合、... 视觉-语言预训练(visual-language pre-training,VLP)旨在通过在大规模图像-文本多模态数据集上进行学习得到强大的多模态表示.多模态特征融合、对齐是多模态模型训练的关键挑战.现有的大多数视觉-语言预训练模型对于多模态特征融合、对齐问题主要方式是将提取的视觉特征和文本特征直接输入至Transformer模型中.通过Transformer模型中的attention模块进行融合,由于attention机制计算的是两两之间的相似度,因而该方法难以实现多元实体间的对齐.鉴于超图神经网络的超边具有连接多个实体、编码高阶实体相关性的特性,进而实现多元实体间关系的建立.提出基于超图神经网络的多元实体对齐的视觉-语言多模态模型预训练方法.该方法在Transformer多模态融合编码器中引入超图神经网络学习模块学习多模态间多元实体的对齐关系以增强预训练模型中多模态融合编码器实体对齐能力.在大规模图像-文本数据集上对所提视觉-语言预训练模型进行预训练并在视觉问答、图文检索、视觉定位以及自然语言视觉推理多个视觉-语言下游任务上进行微调实验,实验结果表明所提方法相比于baseline方法在多个下游任务中性能均有提升,其中在NLVR2任务上相比baseline方法准确率提升1.8%. 展开更多
关键词 视觉-语言预训练 超图神经网络 多元实体对齐 注意力机制 多模态理解
在线阅读 下载PDF
融合线图的超门控图神经网络的会话推荐系统
13
作者 白杨 梅红岩 +1 位作者 袁凤源 吴帅甫 《计算机工程与设计》 北大核心 2025年第9期2487-2493,共7页
针对现有的会话推荐模型无法捕捉高维度的相关性和信息传播受限问题,提出了一种会话推荐模型,利用线图神经网络结合超门控图神经网络建模复杂关系和多层次语义来获取高维度的信息。超门控图神经网络可以处理复杂的关系和依赖,而结合门... 针对现有的会话推荐模型无法捕捉高维度的相关性和信息传播受限问题,提出了一种会话推荐模型,利用线图神经网络结合超门控图神经网络建模复杂关系和多层次语义来获取高维度的信息。超门控图神经网络可以处理复杂的关系和依赖,而结合门控线图方法,可以处理不同长度的会话序列,适应不同数据类型和场景。这使得模型具有良好的泛化能力,在推荐任务中提供更准确的结果。实验结果表明,该模型在Tmall和Diginetica两个基准数据集上优于现有方法。 展开更多
关键词 会话推荐 图门控机制 超图神经网络 多层次语义关系 注意力机制 门控线图 推荐系统
在线阅读 下载PDF
结合动态多阶门控GNN和超图卷积的自监督会话推荐 被引量:1
14
作者 沈学利 赵国阳 《计算机系统应用》 2025年第4期90-103,共14页
针对现有基于图神经网络的会话推荐方法中缺乏对高阶特征的提取和利用以及数据稀疏性的问题,提出一种结合动态多阶门控图神经网络(GGNN)和超图卷积的自监督会话推荐模型(SDMHC-GNN).首先,利用不同的图结构将会话序列建模为3个不同的视图... 针对现有基于图神经网络的会话推荐方法中缺乏对高阶特征的提取和利用以及数据稀疏性的问题,提出一种结合动态多阶门控图神经网络(GGNN)和超图卷积的自监督会话推荐模型(SDMHC-GNN).首先,利用不同的图结构将会话序列建模为3个不同的视图:会话视图、超图视图和关系视图,会话视图使用动态多阶门控图神经网络、稀疏自注意力和稀疏全局注意力机制生成局部顺序会话表示,超图视图使用超图卷积和软注意力机制生成高阶会话表示,关系视图使用图卷积和稀疏交叉注意力机制生成会话关系表示;其次,通过自监督学习对不同的会话表示之间的互特征最大化;最后,通过意向邻居协作模块对当前会话表示进行过滤和增强.在Diginetica和Tmall两个公开数据集上进行多次实验,并与先进基线模型比较,实验结果表明所提出模型的性能优于基线模型,证明了该模型的有效性. 展开更多
关键词 会话推荐 动态多阶门控图神经网络 超图卷积 稀疏交叉注意力机制 自监督学习
在线阅读 下载PDF
基于超图卷积神经网络的多行为感知服务推荐方法 被引量:3
15
作者 陆佳炜 李端倪 +2 位作者 王策策 徐俊 肖刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第10期1977-1986,共10页
针对现有服务推荐方法中高阶服务特征提取不够充分的问题,提出基于超图卷积神经网络的多行为感知服务推荐方法(MBSRHGNN).该方法根据服务交互类型和服务组合信息构建多重超图,基于谱分解理论和多重超图的功能结构特性以设计双通道超图... 针对现有服务推荐方法中高阶服务特征提取不够充分的问题,提出基于超图卷积神经网络的多行为感知服务推荐方法(MBSRHGNN).该方法根据服务交互类型和服务组合信息构建多重超图,基于谱分解理论和多重超图的功能结构特性以设计双通道超图卷积网络.利用切比雪夫多项式近似超图卷积核来降低计算复杂度;在超图卷积过程中,结合多行为推荐方法和自注意力机制度量多行为交互之间的重要性差异,提出HG-DiffPool超图池化方法来降低特征维度;通过融合服务嵌入向量和超图信号,学习不同服务的推荐概率分布;爬取真实服务数据,构造不同稀疏度的数据集进行实验.实验结果表明,所提的MBSRHGNN服务推荐方法能够适应数据高度稀疏的推荐场景,并且在推荐精确度和相关性上的表现优于现有基线方法. 展开更多
关键词 服务推荐 图神经网络 超图学习 多行为推荐 注意力机制
在线阅读 下载PDF
注意力感知的边−节点交换图神经网络模型 被引量:4
16
作者 王瑞琴 黄熠旻 +2 位作者 纪其顺 万超艺 周志峰 《电信科学》 北大核心 2024年第1期106-114,共9页
提出了一种注意力感知的边-节点交换图神经网络(attention aware edge-node exchange graph neural network,AENN)模型,在图结构化数据表示框架下,使用边-节点切换卷积的图神经网络算法进行图编码,用于半监督分类和回归分析。AENN是一... 提出了一种注意力感知的边-节点交换图神经网络(attention aware edge-node exchange graph neural network,AENN)模型,在图结构化数据表示框架下,使用边-节点切换卷积的图神经网络算法进行图编码,用于半监督分类和回归分析。AENN是一种通用的图编码框架,用于将图节点和边嵌入一个统一的潜在特征空间。具体地,基于原始无向图,不断切换边与节点的卷积,并在卷积过程中通过注意力机制分配不同邻居的权重,从而实现特征传播。在3个数据集上的实验研究表明,所提方法较已有方法在半监督分类和回归分析中具有明显的性能提升。 展开更多
关键词 图神经网络 消息传递 注意力机制 超图 边图
在线阅读 下载PDF
一种基于层次超图注意力神经网络的服务推荐算法 被引量:1
17
作者 杨东昇 王桂玲 郑鑫 《计算机科学》 CSCD 北大核心 2024年第11期103-111,共9页
随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互... 随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互,忽略了mashup和API调用之间的内在关系;为了解决这个问题,提出了一种基于层次超图注意力的服务推荐方法(H-HGSR)来进行API推荐。首先定义了8种类型的超边,并探究了对应类型超边的超图邻接矩阵生成方法,然后提出了节点级和超边级的注意力机制。节点级注意力机制用于聚合特定类型超图邻接矩阵下的不同邻居的重要信息,以捕获mashup和API之间的高阶关系;超边级注意力机制用于对从不同类型超图邻接矩阵生成的节点嵌入进行加权组合。通过学习节点级和超边级注意力的重要性,可以获得更准确的嵌入表示。最后使用一个多层感知器神经网络(MLP)进行服务推荐。在Programmable Web真实数据集上进行了大量实验,结果表明,所提H-HGSR框架优于目前最先进的服务推荐方法。 展开更多
关键词 服务推荐 超图 图神经网络 注意力机制
在线阅读 下载PDF
融合超图注意力机制与图卷积网络的信息扩散预测 被引量:2
18
作者 苗琛香 刘小洋 《计算机应用研究》 CSCD 北大核心 2023年第6期1715-1720,共6页
针对传统的信息预测缺乏对用户全局性依赖挖掘进行研究,提出了一种融合超图注意力机制与图卷积网络的信息扩散预测模型(HGACN)。首先构建用户社交关系子图,采样获得子级联序列,输入图卷积神经网络学习用户社交关系结构特征;其次,综合考... 针对传统的信息预测缺乏对用户全局性依赖挖掘进行研究,提出了一种融合超图注意力机制与图卷积网络的信息扩散预测模型(HGACN)。首先构建用户社交关系子图,采样获得子级联序列,输入图卷积神经网络学习用户社交关系结构特征;其次,综合考虑用户间和级联间的全局依赖,采用超图注意机制(HGAT)学习用户不同时间间隔的交互特征;最后,将学习到的用户表示捕获到嵌入模块,利用门控机制将其融合获得更具表现力的用户表示,利用带掩码的多头注意力机制进行信息预测。在Twitter等五个数据集上的实验结果表明,提出的HGACN模型在hits@N提高了4.4%,map@N提高了2.2%,都显著优于已有的MS-HGAT等扩散预测模型,证明HGACN模型是合理、有效的。这对谣言监测以及恶意账户的检测有非常重大的意义。 展开更多
关键词 超图 图卷积网络 门控机制 多头注意力机制 扩散预测
在线阅读 下载PDF
SGRec:一种基于双层信息交互的会话推荐算法 被引量:1
19
作者 王誉熹 彭敦陆 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1392-1397,共6页
会话推荐是根据匿名用户的交互序列去推荐该用户下一个最有可能交互的项目.在现有的会话推荐模型中,大多数模型只学习了图的单层信息,这种学习方式会导致对交互序列的信息提取不完整.本文提出了一种结合项目的图级信息与序列级信息的推... 会话推荐是根据匿名用户的交互序列去推荐该用户下一个最有可能交互的项目.在现有的会话推荐模型中,大多数模型只学习了图的单层信息,这种学习方式会导致对交互序列的信息提取不完整.本文提出了一种结合项目的图级信息与序列级信息的推荐算法.图级信息是将用户的交互序列映射为一个高维空间超图,通过超图神经网络去学习图中每个节点的信息;会话中项目的序列级信息采用深度序列提取器和注意力网络去获取,最终将两组信息融合并通过自注意力网络进行下一项推荐.通过这种方法可以获得会话序列中每个项目更完整的信息.本文在真实数据集Diginetica,Tmall,Nowplaying上设置对比实验验证了算法的有效性,该算法在MRR@N和P@N上有明显提升,有效地证明了本文算法的推荐性能. 展开更多
关键词 会话推荐 超图神经网络 注意力网络 循环神经网络
在线阅读 下载PDF
融合全局信息的多图神经网络会话推荐 被引量:1
20
作者 黄涛 徐贤 《小型微型计算机系统》 CSCD 北大核心 2024年第4期769-776,共8页
基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多... 基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多图神经网络会话推荐模型(GIMGNN)来增强会话推荐的效果.该模型首先通过超图卷积神经网络和门控图神经网络从全局会话超图和局部会话图中学习两个级别的物品表示,然后通过注意力机制将反向位置信息融合到两种表示中,最后利用融合后的表示完成预测.在两个真实数据集Yoochoose和Diginetica上进行了一系列实验,实验结果表明,对比性能最优的基准模型,GIMGNN模型在Yoochoose上P@20和MRR@20至少提升了2.42%和4.01%,在Diginetica上P@20和MRR@20至少提升了6.56%和9.11%,验证了模型的有效性. 展开更多
关键词 会话推荐 超图卷积神经网络 门控图神经网络 注意力机制 位置信息
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部