Harnessing bacteria for superoxide production in bioremediation holds immense promise,yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide.This study...Harnessing bacteria for superoxide production in bioremediation holds immense promise,yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide.This study delves into a cost-effective approach to amplify superoxide production using an Arthrobacter strain,a prevalent soil bacterial genus.Our research reveals that introducing a carbon source along with specific iron-binding ligands,including deferoxamine(DFO),diethylenetriamine pentaacetate(DTPA),citrate,and oxalate,robustly augments microbial superoxide generation.Moreover,our findings suggest that these iron-binding ligands play a pivotal role in converting superoxide into hydroxyl radicals by modulating the electron transfer rate between Fe(Ⅲ)/Fe(Ⅱ)and superoxide.Remarkably,among the tested ligands,only DTPA emerges as a potent promoter of this conversion process when complexed with Fe(Ⅲ).We identify an optimal Fe(Ⅲ)to DTPA ratio of approximately 1:1 for enhancing hydroxyl radical production within the Arthrobacter culture.This research underscores the efficacy of simultaneously introducing carbon sources and DTPA in facilitating superoxide production and its subsequent conversion to hydroxyl radicals,significantly elevating bioremediation performance.Furthermore,our study reveals that DTPA augments superoxide production in cultures of diverse soils,with various soil microorganisms beyond Arthrobacter identified as contributors to superoxide generation.This emphasizes the universal applicability of DTPA across multiple bacterial genera.In conclusion,our study introduces a promising methodology for enhancing microbial superoxide production and its conversion into hydroxyl radicals.These findings hold substantial implications for the deployment of microbial reactive oxygen species in bioremediation,offering innovative solutions for addressing environmental contamination challenges.展开更多
P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process o...P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.展开更多
Achieving sustainable energy and chemical production has become an important issue for human society.Photocatalysis has attracted much attention due to its ability to harness solar energy to drive chemical reactions.M...Achieving sustainable energy and chemical production has become an important issue for human society.Photocatalysis has attracted much attention due to its ability to harness solar energy to drive chemical reactions.Metal sulfide-based photocatalysts(e.g.,Cd S,Zn In2S4)have shown substantial potential in biomass-based hydroxyl compound valorization.In this review,we summarize the recent progress in metal sulfide-based photocatalysts for the photo upgrading of biomass-derived hydroxyl compounds coupled with reduction reactions(e.g.,CO_(2)reduction,H_(2)O_(2)generation,and H_(2)evolution).The mechanism of biomass redox reactions is discussed,highlighting the potential of realizing the valorization of biomass-derived compounds coupled with the reduction reactions,which is beneficial for researchers to actively explore biomass biorefinery pathways in order to modulate the selectivity of the valueadded products.Various modification strategies are presented,including elemental doping,defect engineering,heterojunction construction,and cocatalyst loading.These strategies modulate the energy band structure,surface electron density,and built-in electric field strength of metal sulfide-based photocatalysts,thereby enhancing their photocatalytic performance.The challenges and prospects of metal sulfidebased photocatalysts in biomass valorization are analyzed.This approach contributes to the development of photocatalysts that can accelerate biomass photo-upgrading coupling reactions.This review aims to provide deeper insights into the photocatalytic biorefinery pathways and contribute to the development of functionalized photocatalysts that can accelerate biomass photo upgrading,highlighting the synergistic effects of multiple coupling reactions.展开更多
Addressing inadequate OH^(*)adsorption in Ru Co alloy catalysts is crucial for boosting intermediate coverage and redirecting the water-splitting pathway.Herein,the adaptive P sites were strategically incorporated to ...Addressing inadequate OH^(*)adsorption in Ru Co alloy catalysts is crucial for boosting intermediate coverage and redirecting the water-splitting pathway.Herein,the adaptive P sites were strategically incorporated to overcome the aforementioned challenge.The P sites,as potent OH^(*)adsorption centers,synergize with Co sites to promote water dissociation and enrich surrounding Ru sites with H*intermediates,thus triggering the Volmer-Tafel route for hydrogen evolution reaction(HER).Besides,during the oxygen evolution reaction(OER),the surface of P-Ru Co was reconstructed into Ru-doped Co OOH with anchored PO_(4)^(3-).These PO_(4)^(3-)not only circumvent the intrinsic OH^(*)adsorption limitations of Ru-Co OOH in the adsorbate evolution mechanism(AEM)by rerouting to a more expeditious lattice oxygen oxidation mechanism(LOM)but also improve the coverage of key oxygen-containing intermediates,significantly accelerating OER kinetics.Consequently,the P-Ru Co demonstrates exceptional bifunctional performance,with overpotentials of 29 m V for HER and 222 m V for OER at 10 m A cm^(-2).Remarkably,the mass activities of PRu Co for HER(5.48 A mg^(-1))and OER(2.13 A mg^(-1))are 6.2 and 11.2 times higher than those of its commercial counterparts(Ru/C for HER and RuO_(2)for OER),respectively.When integrated into an anionexchange-membrane electrolyzer,this catalyst achieves ampere-level current densities of 1.32 A cm^(-2)for water electrolysis and 1.23 A cm^(-2)for seawater electrolysis at 2.1 V,with a 500-h durability.展开更多
UiO-66-H MOFs can effectively catalyze the direct selective oxidation of methane(DSOM)to high value-added oxygenates under mild conditions.However,UiO-66-NH_(2)with benzene-1,4-dicarboxylate(NH_(2)-BDC)ligand modifyin...UiO-66-H MOFs can effectively catalyze the direct selective oxidation of methane(DSOM)to high value-added oxygenates under mild conditions.However,UiO-66-NH_(2)with benzene-1,4-dicarboxylate(NH_(2)-BDC)ligand modifying the Zr-oxo nodes exhibits relatively inferior catalytic performance for DSOM.Here,a combination of density functional theory(DFT)calculations and experiments was employed to explore the underlying reasons for the limited catalytic activity of UiO-66-NH_(2).The results indicate that the methane hydroxylation performance of UiO-66-NH_(2)is almost unaffected by the increase of·OH concentration.This is attributed to the formation of substantial non-covalent hydrogen bonds between the oxygen atoms of oxygenic species on the Zr-oxo nodes and the hydrogen atoms of-NH_(2)groups,which diminishes the spin density distribution on the active sites of(·OH)m/UiO-66-NH_(2),leading to minimal change of the adsorption energy of CH_(4).Additionally,the calculated adsorption energies(Eads)of CH_(4)exhibit a linear relationship with the catalytic activity of UiO-66-NH_(2)for DSOM reaction.展开更多
Hydroxyl radical(·OH)formation from Fe(Ⅱ)-bearing clay mineral oxygenation in the shallow subsurface has been well documented under moderate environmental conditions.However,the impact of freezing processes on t...Hydroxyl radical(·OH)formation from Fe(Ⅱ)-bearing clay mineral oxygenation in the shallow subsurface has been well documented under moderate environmental conditions.However,the impact of freezing processes on the·OH production capability of Fe(Ⅱ)-bearing clay minerals for organic contaminant degradation,particularly in seasonally frozen soils,remains unclear.In this study,we investigated the influence of pre-freezing durations on the mineral proprieties,·OH production,and phenol degradation during the oxygenation of reduced Fe-rich nontronite(rNAu-2)and Fe-poor montmorillonite(rSWy-3).During the freezing process of reduced clay minerals(1 mM Fe(Ⅱ)),the content of edge surface Fe and Fe(Ⅱ)decreased by up to 46%and 58%,respectively,followed by a slight increased as clay mineral particles aggregated and subsequently partially disaggregated.As the edge surface Fe(Ⅱ)is effective in O_(2) activation but less effective in the transformation of H_(2)O_(2) to·OH,the redistribution of edge surface Fe(Ⅱ)leads to that·OH production and phenol degradation increased initially and then decreased with pre-freezing durations ranging from 0 to 20 days.Moreover,the rate constants of phenol degradation for both the rapid and slow reaction phases also first increase and then decrease with freezing time.However,pre-freezing significantly influenced the rapid phase of phenol degradation by rNAu-2 but affected the slow phase by rSWy-3 due to the much higher edge-surface Fe(Ⅱ)content in rNAu-2.Overall,these findings provide novel insights into the mechanism of·OH production and contaminant degradation during the freeze-thaw processes in clay-rich soils.展开更多
Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent,however,the mechanism on the hydroxyl radical(HO^(·))production by pyrite under estuarine environmental conditions...Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent,however,the mechanism on the hydroxyl radical(HO^(·))production by pyrite under estuarine environmental conditions is still poorly understood.The batch experiments were performed to investigate the effects of estuarine conditions including aging(in air,in water),seawater anions(Cl^(-),Br^(-)and HCO_(3)^(-))and light on the HO^(·)production by pyrite oxidation.The one-electron transfer dominated the process from O_(2) to HO^(·)induced by oxidation of pyrite.The Fe(oxyhydr)oxide coatings on the surface of pyrite aged in air and water consumed hydrogen peroxide while mediating the electron transfer,and the combined effect of the two resulted in a suppression of HO^(·)production in the early stage of aging and a promotion of HO^(·)production in the later stage of aging.Corrosion of the surface oxide layers by aggressive anions was the main reason for the inhibition of HO^(·)production by Cl^(-)and Br^(-),and the generation of Cl^(·)and Br^(·)may also play a role in the scavenging of HO^(·).HCO_(3)^(-)increased the average rate of HO^(·)production through surface-CO_(2) complexes formed by adsorption on the surface of pyrite.The significant enhancement of HO^(·)production under light was attributed to the formation of photoelectrons induced by photochemical reactions on pyrite and its surface oxide layers.These findings provide new insights into the environmental chemical behavior of pyrite in the estuary and enrich the understanding of natural remediation of estuarine environments.展开更多
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)...Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.展开更多
The environmental behavior of and risks associated with nanoplastics(NPs)have attracted considerable attention.However,compared to pristine NPs,environmental factors such as ultraviolet(UV)irradiation that lead to cha...The environmental behavior of and risks associated with nanoplastics(NPs)have attracted considerable attention.However,compared to pristine NPs,environmental factors such as ultraviolet(UV)irradiation that lead to changes in the toxicity of NPs have rarely been studied.We evaluated the changes in morphology and physicochemical properties of polystyrene(PS)NPs before and after UV irradiation,and compared their hepatotoxicity in mice.The results showed that UV irradiation caused particle size reduction and increased the carbonyl index(CI)and negative charge on the particle surface.UV-aged PS NPs(aPS NPs)could induce the generation of hydroxyl radicals(·OH),but also further promoted the generation of·OH in the Fenton reaction system.Hepatic pathological damage was more severe in mice exposed to aPS NPs,accompanied by a large number of vacuoles and hepatocyte balloon-like changes and more marked perturbations in blood glucose and serum lipoprotein,alanine aminotransferase and aspartate aminotransferase levels.In addition,exposure to PS NPs and aPS NPs,especially aPS NPs,triggered oxidative stress and significantly damaged the antioxidant capacity of mice liver.Compared with PS NPs,exposure to aPS NPs increased the number of altered metabolites in hepatic and corresponding metabolic pathways,especially glutathione metabolism.Our research suggests that UV irradiation can disrupt the redox balance in organisms by promoting the production of·OH,enhancing PS NPs-induced liver damage and metabolic disorders.This study will help us understand the health risks of NPs and to avoid underestimation of the risks of NPs in nature.展开更多
Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of...Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.展开更多
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous...The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h.展开更多
A catalytic diastereoselective Prins reaction for hydroxymethylation and hydroxylation of 1,3-diarylpropene was successfully utilized to prepare various 1,3-dioxanes7 in 14-88%yields.Take advantage of the synthetic in...A catalytic diastereoselective Prins reaction for hydroxymethylation and hydroxylation of 1,3-diarylpropene was successfully utilized to prepare various 1,3-dioxanes7 in 14-88%yields.Take advantage of the synthetic intermediate7h,the key B/C rings in brazilin core could be constructed by the sequential of Friedel-Crafts/Ullmann-Ma rather than Ullmann-Ma/Friedel-Crafts reactions.展开更多
The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on ...The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on a boron-doped diamond (BDD) electrode. The hydroxyl radicals were quantified indirectly by assaying the samples from the HClO4 (0.1 M) electrolysis with a 10−4 M potassium permanganate solution. The investigations showed that the amount of hydroxyl radicals depends on the concentration of HClO4 and the current density. As for chlorine, a qualitative determination was carried out. A mixture of the electrolyte solution of HClO4 (0.1 M) + NaI (0.2 M) + 2 mL of hexane, taken in this order, leads to a purplish-pink coloration attesting to the presence of Cl2. The same test was carried out with NaBr and NaI giving pale and very pale pink colourations, respectively, showing that the intensity of the colouration depends on the strength of the oxidant present. In addition, oxidants were detected during the electrooxidation of metronidazole (MNZ). The results showed the participation of electrogenerated hydroxyl radicals. The generation of chlorine has also been proven. Furthermore, the degradation leads to a chemical oxygen demand (COD) removal rate of 83.48% and the process is diffusion-controlled.展开更多
Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts.Here a green and efficient asymmetric hydroxylation of primary and secondary C-H bon...Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts.Here a green and efficient asymmetric hydroxylation of primary and secondary C-H bonds at propargylic positions has been established.A series of optically active propargylic alcohols were prepared with high regio-and enantioselectivity(up to 99%ee)under mild reaction conditions by using P450tol,while the C≡C bonds in the molecule remained unreacted.This protocol provides a green and practical method for constructing enantiomerically chiral propargylic alcohols.In addition,we also demonstrated that the biohydroxylation strategy was able to scaled up to 2.25 mmol scale with the production of chiral propargyl alcohol 2a at a yield of 196 mg with 96%ee,which’s an important synthetic intermediate of antifungal drug Ravuconazole.展开更多
Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane c...Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.展开更多
Protoplasts prepared from tobacco (Nicotiana tabacum L., cultivar BY-2) suspension cells have similar morphological characteristics to those in animal cells. The hallmarks of apoptosis such as condensation and periphe...Protoplasts prepared from tobacco (Nicotiana tabacum L., cultivar BY-2) suspension cells have similar morphological characteristics to those in animal cells. The hallmarks of apoptosis such as condensation and peripheral distribution of nuclei, TUNEL positive reaction, and DNA ladders were observed when tobacco protoplasts were treated with the hydroxyl radical generating system (1.0 mmol/L FeSO4/0.5 mmol/L H2O2). In animals, the loss of transmembrane potential (DeltaPsi(m)) and the exposure of phospholipid phosphatidylserine (PS) are believed to be the main apoptosis events. To test whether these significant processes take place in plants, flow cytometry was used to detect annexin V binding and changes in DeltaPsi(m). Results showed that the PS turned out from inner membrane and DeltaPsi(m) gradually decreased during the apoptosis. All these apoptotic characteristics proved that hydroxyl radicals can cause typical programmed cell death (PCD) in tobacco protoplasts and this design can be served as an effective experiment system to explore the mechanism of plant apoptosis.展开更多
In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganes...In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganese chloride were investigated. The aqueous thermostat and vibrating bed were used to determine the solubility of hydroxyl manganese chloride in water, ammonium chloride and manganese chloride system, and the phase diagrams of multicomponent system were drawn. The research results indicate that hydroxyl manganese chloride has been produced in laboratory and is in favor of the solid-liquid separation at high temperature.展开更多
The hydroxyl radical(-OH)-scavenging ability of culture filtrates from submerged culture of Lentinula edodes AX3 and five mildews on lignocellulose substance was analysed. Only L. edodes AX3 showed significant -OH-s...The hydroxyl radical(-OH)-scavenging ability of culture filtrates from submerged culture of Lentinula edodes AX3 and five mildews on lignocellulose substance was analysed. Only L. edodes AX3 showed significant -OH-scavenging ability which reached 52.2% at about the 48th hour. All mildews could hardly scavenge -OH under the experimental conditions. -OH-scavenging ability is considered related to the mode and ability of lignocellulose degradation of a strain. The degradation or bioconversion products might be the substance base for.this effect.展开更多
S─mephenytoin and debrisoquin hydroxylation abilities were investigated in 118 normal Chinese Zhuang minority volunteers after co─administration po 100 mg racemic mephenytoin(MP)and 10 mg debrisoquin (DB). The rat...S─mephenytoin and debrisoquin hydroxylation abilities were investigated in 118 normal Chinese Zhuang minority volunteers after co─administration po 100 mg racemic mephenytoin(MP)and 10 mg debrisoquin (DB). The ratio between S─and R─enantiomers of mephenytoin in urinewas determined by implication of GC─NPD and used as the measure of the drug hydroxylation. 2 ofthe 118 subjects had S/R ratios greater than 1.0 and were poor hydroxylators of S─mephenytoin. The frequency of S─mephenytoin poor metabolizers (PM) was 10.2%. No PM of debrisoquin was found in the volunteers. It indicated that there was no relationship between S─mephenytoin P(4′)─ hydroxylation and debrisoquin 4─hydroxylation polymorphisms in Chinese Zhuang Minority population. In addition, 16 of the 118 volunteers(4 PMs and 12 EMs of S-mephenytoin) were se─lected to conduct the elimination kinetic studies of racemic mephenytoin and debrisoquin in urine. The pharmacokinetic parameters of S─, R─mephenytoin, DB and 4─OH─DB were calculated.展开更多
Hydroxylation of 3-nitrotyrosine (3-NT) and 3-NT containing peptide Gly-nitroTyr-Gly in aqueous solution by hydroxyl radical were investigated with gamma irradiation. The structures of the hydroxylated products were...Hydroxylation of 3-nitrotyrosine (3-NT) and 3-NT containing peptide Gly-nitroTyr-Gly in aqueous solution by hydroxyl radical were investigated with gamma irradiation. The structures of the hydroxylated products were confirmed by electrospray ionization mass spectrometry and ^1H NMR spectrometry. The reactivity of 3-nitrotyrosine has been investigated using density functional theory (DFT) calculation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52170156,52250056,and 52293443)the Shenzhen Science and Technology Program(No.KQTD20190929172630447).
文摘Harnessing bacteria for superoxide production in bioremediation holds immense promise,yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide.This study delves into a cost-effective approach to amplify superoxide production using an Arthrobacter strain,a prevalent soil bacterial genus.Our research reveals that introducing a carbon source along with specific iron-binding ligands,including deferoxamine(DFO),diethylenetriamine pentaacetate(DTPA),citrate,and oxalate,robustly augments microbial superoxide generation.Moreover,our findings suggest that these iron-binding ligands play a pivotal role in converting superoxide into hydroxyl radicals by modulating the electron transfer rate between Fe(Ⅲ)/Fe(Ⅱ)and superoxide.Remarkably,among the tested ligands,only DTPA emerges as a potent promoter of this conversion process when complexed with Fe(Ⅲ).We identify an optimal Fe(Ⅲ)to DTPA ratio of approximately 1:1 for enhancing hydroxyl radical production within the Arthrobacter culture.This research underscores the efficacy of simultaneously introducing carbon sources and DTPA in facilitating superoxide production and its subsequent conversion to hydroxyl radicals,significantly elevating bioremediation performance.Furthermore,our study reveals that DTPA augments superoxide production in cultures of diverse soils,with various soil microorganisms beyond Arthrobacter identified as contributors to superoxide generation.This emphasizes the universal applicability of DTPA across multiple bacterial genera.In conclusion,our study introduces a promising methodology for enhancing microbial superoxide production and its conversion into hydroxyl radicals.These findings hold substantial implications for the deployment of microbial reactive oxygen species in bioremediation,offering innovative solutions for addressing environmental contamination challenges.
文摘P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.
基金the financial support from the National Natural Science Foundation of China(No.22178181)the Fundamental Research Funds for the Central Universities(Nankai University(No.63253204))。
文摘Achieving sustainable energy and chemical production has become an important issue for human society.Photocatalysis has attracted much attention due to its ability to harness solar energy to drive chemical reactions.Metal sulfide-based photocatalysts(e.g.,Cd S,Zn In2S4)have shown substantial potential in biomass-based hydroxyl compound valorization.In this review,we summarize the recent progress in metal sulfide-based photocatalysts for the photo upgrading of biomass-derived hydroxyl compounds coupled with reduction reactions(e.g.,CO_(2)reduction,H_(2)O_(2)generation,and H_(2)evolution).The mechanism of biomass redox reactions is discussed,highlighting the potential of realizing the valorization of biomass-derived compounds coupled with the reduction reactions,which is beneficial for researchers to actively explore biomass biorefinery pathways in order to modulate the selectivity of the valueadded products.Various modification strategies are presented,including elemental doping,defect engineering,heterojunction construction,and cocatalyst loading.These strategies modulate the energy band structure,surface electron density,and built-in electric field strength of metal sulfide-based photocatalysts,thereby enhancing their photocatalytic performance.The challenges and prospects of metal sulfidebased photocatalysts in biomass valorization are analyzed.This approach contributes to the development of photocatalysts that can accelerate biomass photo-upgrading coupling reactions.This review aims to provide deeper insights into the photocatalytic biorefinery pathways and contribute to the development of functionalized photocatalysts that can accelerate biomass photo upgrading,highlighting the synergistic effects of multiple coupling reactions.
基金supported by the National Natural Science Foundation of China(Nos.52301279 and 51901115)the Shandong Provincial Natural Science Foundation,China(ZR2023MB122 and ZR2019PEM001)+1 种基金the Outstanding Youth Innovation Team of Universities in Shandong Province(2024KJH067)the Innovation fund project for graduate student of China University of Petroleum(East China)supported by the Fundamental Research Funds for the Central Universities(No.23CX04010A)。
文摘Addressing inadequate OH^(*)adsorption in Ru Co alloy catalysts is crucial for boosting intermediate coverage and redirecting the water-splitting pathway.Herein,the adaptive P sites were strategically incorporated to overcome the aforementioned challenge.The P sites,as potent OH^(*)adsorption centers,synergize with Co sites to promote water dissociation and enrich surrounding Ru sites with H*intermediates,thus triggering the Volmer-Tafel route for hydrogen evolution reaction(HER).Besides,during the oxygen evolution reaction(OER),the surface of P-Ru Co was reconstructed into Ru-doped Co OOH with anchored PO_(4)^(3-).These PO_(4)^(3-)not only circumvent the intrinsic OH^(*)adsorption limitations of Ru-Co OOH in the adsorbate evolution mechanism(AEM)by rerouting to a more expeditious lattice oxygen oxidation mechanism(LOM)but also improve the coverage of key oxygen-containing intermediates,significantly accelerating OER kinetics.Consequently,the P-Ru Co demonstrates exceptional bifunctional performance,with overpotentials of 29 m V for HER and 222 m V for OER at 10 m A cm^(-2).Remarkably,the mass activities of PRu Co for HER(5.48 A mg^(-1))and OER(2.13 A mg^(-1))are 6.2 and 11.2 times higher than those of its commercial counterparts(Ru/C for HER and RuO_(2)for OER),respectively.When integrated into an anionexchange-membrane electrolyzer,this catalyst achieves ampere-level current densities of 1.32 A cm^(-2)for water electrolysis and 1.23 A cm^(-2)for seawater electrolysis at 2.1 V,with a 500-h durability.
基金the financial support from National Natural Science Foundation of China(22363001,22378379,22479032,22022814)the National Key R&D Project(2022YFA1503900)+6 种基金the Natural Science Special Foundation of Guizhou University(No.202140)National Natural Science Foundation of China for Single-Atom Catalysis(22388102)the Youth Innovation Promotion Association CAS(Y2021057)Dalian Science Foundation for Distinguished Young Scholars(2021RJ10)Grant.YLU-DNL Fund(2022010)the Young Top-notch Talents of Liaoning Province(XLYC2203140)the Liaoning Foundation for Distinguished Young Scholars(2025JH6/101100011).
文摘UiO-66-H MOFs can effectively catalyze the direct selective oxidation of methane(DSOM)to high value-added oxygenates under mild conditions.However,UiO-66-NH_(2)with benzene-1,4-dicarboxylate(NH_(2)-BDC)ligand modifying the Zr-oxo nodes exhibits relatively inferior catalytic performance for DSOM.Here,a combination of density functional theory(DFT)calculations and experiments was employed to explore the underlying reasons for the limited catalytic activity of UiO-66-NH_(2).The results indicate that the methane hydroxylation performance of UiO-66-NH_(2)is almost unaffected by the increase of·OH concentration.This is attributed to the formation of substantial non-covalent hydrogen bonds between the oxygen atoms of oxygenic species on the Zr-oxo nodes and the hydrogen atoms of-NH_(2)groups,which diminishes the spin density distribution on the active sites of(·OH)m/UiO-66-NH_(2),leading to minimal change of the adsorption energy of CH_(4).Additionally,the calculated adsorption energies(Eads)of CH_(4)exhibit a linear relationship with the catalytic activity of UiO-66-NH_(2)for DSOM reaction.
基金supported by the National Natural Science Foundation of China(Nos.U22A20591,42077185,42107217)the Sichuan Province Science and Technology Program for Distinguished Young Scholars(No.2022JDJQ0010)+1 种基金the Sichuan Science and Technology Program(No.2024NSFSC0842)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2020Z002)。
文摘Hydroxyl radical(·OH)formation from Fe(Ⅱ)-bearing clay mineral oxygenation in the shallow subsurface has been well documented under moderate environmental conditions.However,the impact of freezing processes on the·OH production capability of Fe(Ⅱ)-bearing clay minerals for organic contaminant degradation,particularly in seasonally frozen soils,remains unclear.In this study,we investigated the influence of pre-freezing durations on the mineral proprieties,·OH production,and phenol degradation during the oxygenation of reduced Fe-rich nontronite(rNAu-2)and Fe-poor montmorillonite(rSWy-3).During the freezing process of reduced clay minerals(1 mM Fe(Ⅱ)),the content of edge surface Fe and Fe(Ⅱ)decreased by up to 46%and 58%,respectively,followed by a slight increased as clay mineral particles aggregated and subsequently partially disaggregated.As the edge surface Fe(Ⅱ)is effective in O_(2) activation but less effective in the transformation of H_(2)O_(2) to·OH,the redistribution of edge surface Fe(Ⅱ)leads to that·OH production and phenol degradation increased initially and then decreased with pre-freezing durations ranging from 0 to 20 days.Moreover,the rate constants of phenol degradation for both the rapid and slow reaction phases also first increase and then decrease with freezing time.However,pre-freezing significantly influenced the rapid phase of phenol degradation by rNAu-2 but affected the slow phase by rSWy-3 due to the much higher edge-surface Fe(Ⅱ)content in rNAu-2.Overall,these findings provide novel insights into the mechanism of·OH production and contaminant degradation during the freeze-thaw processes in clay-rich soils.
基金supported by the National Natural Science Foundation of China (No.51709157)the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University (No.2020QNQT014)。
文摘Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent,however,the mechanism on the hydroxyl radical(HO^(·))production by pyrite under estuarine environmental conditions is still poorly understood.The batch experiments were performed to investigate the effects of estuarine conditions including aging(in air,in water),seawater anions(Cl^(-),Br^(-)and HCO_(3)^(-))and light on the HO^(·)production by pyrite oxidation.The one-electron transfer dominated the process from O_(2) to HO^(·)induced by oxidation of pyrite.The Fe(oxyhydr)oxide coatings on the surface of pyrite aged in air and water consumed hydrogen peroxide while mediating the electron transfer,and the combined effect of the two resulted in a suppression of HO^(·)production in the early stage of aging and a promotion of HO^(·)production in the later stage of aging.Corrosion of the surface oxide layers by aggressive anions was the main reason for the inhibition of HO^(·)production by Cl^(-)and Br^(-),and the generation of Cl^(·)and Br^(·)may also play a role in the scavenging of HO^(·).HCO_(3)^(-)increased the average rate of HO^(·)production through surface-CO_(2) complexes formed by adsorption on the surface of pyrite.The significant enhancement of HO^(·)production under light was attributed to the formation of photoelectrons induced by photochemical reactions on pyrite and its surface oxide layers.These findings provide new insights into the environmental chemical behavior of pyrite in the estuary and enrich the understanding of natural remediation of estuarine environments.
基金supported by the National Natural Science Foundation of China(21571038,22035004)the Education Department of Guizhou Province(2021312)+2 种基金the Foundation of Guizhou Province(2019-5666)the National Key R&D Program of China(2017YFA0700101)the State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,202009)。
文摘Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.
基金supported by the National Natural Science Foundation of China(Nos.82173569,81872667)。
文摘The environmental behavior of and risks associated with nanoplastics(NPs)have attracted considerable attention.However,compared to pristine NPs,environmental factors such as ultraviolet(UV)irradiation that lead to changes in the toxicity of NPs have rarely been studied.We evaluated the changes in morphology and physicochemical properties of polystyrene(PS)NPs before and after UV irradiation,and compared their hepatotoxicity in mice.The results showed that UV irradiation caused particle size reduction and increased the carbonyl index(CI)and negative charge on the particle surface.UV-aged PS NPs(aPS NPs)could induce the generation of hydroxyl radicals(·OH),but also further promoted the generation of·OH in the Fenton reaction system.Hepatic pathological damage was more severe in mice exposed to aPS NPs,accompanied by a large number of vacuoles and hepatocyte balloon-like changes and more marked perturbations in blood glucose and serum lipoprotein,alanine aminotransferase and aspartate aminotransferase levels.In addition,exposure to PS NPs and aPS NPs,especially aPS NPs,triggered oxidative stress and significantly damaged the antioxidant capacity of mice liver.Compared with PS NPs,exposure to aPS NPs increased the number of altered metabolites in hepatic and corresponding metabolic pathways,especially glutathione metabolism.Our research suggests that UV irradiation can disrupt the redox balance in organisms by promoting the production of·OH,enhancing PS NPs-induced liver damage and metabolic disorders.This study will help us understand the health risks of NPs and to avoid underestimation of the risks of NPs in nature.
基金supported by the National Natural Science Foundation of China(22172090,21790051)the National Key Research and Development Project of China(2022YFA1204500,2022YFA1204501)+2 种基金the Natural Science Foundation of Shan-dong Province(ZR2021MB015)the Open Funds of the State Key Laboratory of Electroanalytical Chemistry(SKLEAC202202)the Young Scholars Program of Shandong University。
文摘Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.
基金This work is financially supported by National Natural Science Foundation of China(52174283 and 52274308)Innovation Fund Project for Graduate Student of China University of Petroleum(East China)(22CX04023A)the Fundamental Research Funds for the Central Universities。
文摘The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h.
基金support from National Natural Science Foundation of China(82260683 and 22267024)Scientific and Technological Project of Yunnan Precious Metals Laboratory(YPML-2023050265 and YPML-2023050217)+3 种基金Yunnan Science and Technology Talent and Platform Program(202105AG070012)the Top Young Talent of Ten Thousand Talents Program of Yunnan Province(D.L.and L.-D.S.)the Start-up Fund of Yunnan University of Chinese Medicine(2019YZG03)the Bioactive Ethnopharmacol Molecules Chemical Conversion and Application Innovation Team of Department of Education of Yunnan Province(2022).
文摘A catalytic diastereoselective Prins reaction for hydroxymethylation and hydroxylation of 1,3-diarylpropene was successfully utilized to prepare various 1,3-dioxanes7 in 14-88%yields.Take advantage of the synthetic intermediate7h,the key B/C rings in brazilin core could be constructed by the sequential of Friedel-Crafts/Ullmann-Ma rather than Ullmann-Ma/Friedel-Crafts reactions.
文摘The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on a boron-doped diamond (BDD) electrode. The hydroxyl radicals were quantified indirectly by assaying the samples from the HClO4 (0.1 M) electrolysis with a 10−4 M potassium permanganate solution. The investigations showed that the amount of hydroxyl radicals depends on the concentration of HClO4 and the current density. As for chlorine, a qualitative determination was carried out. A mixture of the electrolyte solution of HClO4 (0.1 M) + NaI (0.2 M) + 2 mL of hexane, taken in this order, leads to a purplish-pink coloration attesting to the presence of Cl2. The same test was carried out with NaBr and NaI giving pale and very pale pink colourations, respectively, showing that the intensity of the colouration depends on the strength of the oxidant present. In addition, oxidants were detected during the electrooxidation of metronidazole (MNZ). The results showed the participation of electrogenerated hydroxyl radicals. The generation of chlorine has also been proven. Furthermore, the degradation leads to a chemical oxygen demand (COD) removal rate of 83.48% and the process is diffusion-controlled.
基金financial support from the National Natural Science Foundation of China(No.32271537 and 22061049)the Science and Technology Department of Guizhou province(QKHJCZK2021-036 and QKHRCPTGCC-2023-003)+1 种基金the Science and Technology Department of Zunyi(ZSKRPT-2020-5,ZSKH-2018-3,ZSKRPT-2021-5)Zunyi Medical University(QKH-2018-5772-014).
文摘Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts.Here a green and efficient asymmetric hydroxylation of primary and secondary C-H bonds at propargylic positions has been established.A series of optically active propargylic alcohols were prepared with high regio-and enantioselectivity(up to 99%ee)under mild reaction conditions by using P450tol,while the C≡C bonds in the molecule remained unreacted.This protocol provides a green and practical method for constructing enantiomerically chiral propargylic alcohols.In addition,we also demonstrated that the biohydroxylation strategy was able to scaled up to 2.25 mmol scale with the production of chiral propargyl alcohol 2a at a yield of 196 mg with 96%ee,which’s an important synthetic intermediate of antifungal drug Ravuconazole.
基金supported by the National Natural Science Foundation of China (21225312, U1462120, 21473206)Cheung Kong Scholars Programme of China (T2015036)~~
文摘Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.
文摘Protoplasts prepared from tobacco (Nicotiana tabacum L., cultivar BY-2) suspension cells have similar morphological characteristics to those in animal cells. The hallmarks of apoptosis such as condensation and peripheral distribution of nuclei, TUNEL positive reaction, and DNA ladders were observed when tobacco protoplasts were treated with the hydroxyl radical generating system (1.0 mmol/L FeSO4/0.5 mmol/L H2O2). In animals, the loss of transmembrane potential (DeltaPsi(m)) and the exposure of phospholipid phosphatidylserine (PS) are believed to be the main apoptosis events. To test whether these significant processes take place in plants, flow cytometry was used to detect annexin V binding and changes in DeltaPsi(m). Results showed that the PS turned out from inner membrane and DeltaPsi(m) gradually decreased during the apoptosis. All these apoptotic characteristics proved that hydroxyl radicals can cause typical programmed cell death (PCD) in tobacco protoplasts and this design can be served as an effective experiment system to explore the mechanism of plant apoptosis.
基金Project (062702) supported by Innovation Funds of Institute of Process Engineering,Chinese Academy of Sciences
文摘In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganese chloride were investigated. The aqueous thermostat and vibrating bed were used to determine the solubility of hydroxyl manganese chloride in water, ammonium chloride and manganese chloride system, and the phase diagrams of multicomponent system were drawn. The research results indicate that hydroxyl manganese chloride has been produced in laboratory and is in favor of the solid-liquid separation at high temperature.
文摘The hydroxyl radical(-OH)-scavenging ability of culture filtrates from submerged culture of Lentinula edodes AX3 and five mildews on lignocellulose substance was analysed. Only L. edodes AX3 showed significant -OH-scavenging ability which reached 52.2% at about the 48th hour. All mildews could hardly scavenge -OH under the experimental conditions. -OH-scavenging ability is considered related to the mode and ability of lignocellulose degradation of a strain. The degradation or bioconversion products might be the substance base for.this effect.
文摘S─mephenytoin and debrisoquin hydroxylation abilities were investigated in 118 normal Chinese Zhuang minority volunteers after co─administration po 100 mg racemic mephenytoin(MP)and 10 mg debrisoquin (DB). The ratio between S─and R─enantiomers of mephenytoin in urinewas determined by implication of GC─NPD and used as the measure of the drug hydroxylation. 2 ofthe 118 subjects had S/R ratios greater than 1.0 and were poor hydroxylators of S─mephenytoin. The frequency of S─mephenytoin poor metabolizers (PM) was 10.2%. No PM of debrisoquin was found in the volunteers. It indicated that there was no relationship between S─mephenytoin P(4′)─ hydroxylation and debrisoquin 4─hydroxylation polymorphisms in Chinese Zhuang Minority population. In addition, 16 of the 118 volunteers(4 PMs and 12 EMs of S-mephenytoin) were se─lected to conduct the elimination kinetic studies of racemic mephenytoin and debrisoquin in urine. The pharmacokinetic parameters of S─, R─mephenytoin, DB and 4─OH─DB were calculated.
基金The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 20320130046) ;the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of M0E (No. 20030003049).
文摘Hydroxylation of 3-nitrotyrosine (3-NT) and 3-NT containing peptide Gly-nitroTyr-Gly in aqueous solution by hydroxyl radical were investigated with gamma irradiation. The structures of the hydroxylated products were confirmed by electrospray ionization mass spectrometry and ^1H NMR spectrometry. The reactivity of 3-nitrotyrosine has been investigated using density functional theory (DFT) calculation.