期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis 被引量:2
1
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection BIOMASS cross-upgrading hydrothermal carbonization PYROLYSIS physicochemical properties gasific-ation properties
在线阅读 下载PDF
Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation:An economic approach
2
作者 Judith González-Arias Guillermo Torres-Sempere +2 位作者 Miriam González-Castaño Francisco MBaena-Moreno Tomás RReina 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期69-78,共10页
Herein we study the economic performance of hydrochar and synthetic natural gas coproduction from olive tree pruning.The process entails a combination of hydrothermal carbonization and methanation.In a previous work,w... Herein we study the economic performance of hydrochar and synthetic natural gas coproduction from olive tree pruning.The process entails a combination of hydrothermal carbonization and methanation.In a previous work,we evidenced that standalone hydrochar production via HTC results unprofitable.Hence,we propose a step forward on the process design by implementing a methanation,adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects.Three different plant capacities were analyzed(312.5,625 and 1250 kg/hr).The baseline scenarios showed that,under the current circumstances,our circular economy strategy in unprofitable.An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process.On the contrary,the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability.This seems unlikely even under the presence of a strong subsidy scheme.The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios.Furthermore,significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process.These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies. 展开更多
关键词 hydrothermal carbonization CO_(2)waste valorization METHANATION Profitability analysis
原文传递
Preparation and Characterization of Carbon Microspheres From Waste Cotton Textiles By Hydrothermal Carbonization 被引量:3
3
作者 Yongfang Zhang Wensheng Hou +2 位作者 Hong Guo Sheng Shi Jinming Dai 《Journal of Renewable Materials》 SCIE 2019年第12期1309-1319,共11页
Carbon microspheres were prepared from waste cotton fibers by hydrothermal carbonization(HTC)with the addition of copper sulphate in this work.The important influence factors,temperature,concentration of copper sulpha... Carbon microspheres were prepared from waste cotton fibers by hydrothermal carbonization(HTC)with the addition of copper sulphate in this work.The important influence factors,temperature,concentration of copper sulphate,resident time were explored here.The smooth and regular carbon microspheres could be formed at 330°C with 0.15 wt%copper sulphate after 6 h from waste cotton fibers.The crystal structures of cotton fibers were destructed in a short resident time with 0.15 wt%copper sulphate from SEM images and XRD patterns of solid products.This strategy provides a new,mild and efficient method to prepare carbon microspheres from waste cotton fibers by HTC.FTIR spectra verified that the abundant functional groups existed on the surface of synthesized carbon microspheres.From XPS and element analysis results,the copper sulphate participated in the forming process of carbon microspheres indeed.The presence of copper sulphate in the carbon microspheres provided a possibility for the application in antibacterial field.Besides,the catalytic mechanism of copper sulphate on the hydrolysis and carbonization of waste cotton fibers were also discussed.In conclusion,the copper sulphate is an efficient agent for preparing carbon microspheres by HTC from waste cotton fibers. 展开更多
关键词 Carbon microsphere waste cotton fiber copper sulphate hydrothermal carbonization
在线阅读 下载PDF
NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue 被引量:1
4
作者 Fen Yue Christian Marcus Pedersen +5 位作者 Xiuyin Yan Yequn Liu Danlei Xiang Caifang Ning Yingxiong Wang Yan Qiao 《Green Energy & Environment》 SCIE 2018年第2期163-171,共9页
Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains... Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques(~1H and ^(13)C NMR,~1H-~1H COSY and ~1H-^(13)C HSQC etc.) especially 1D selective gradient total correlation spectroscopy(TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions(180-240 ℃ at 8 h, and 1-24 h at 240 ℃) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. 展开更多
关键词 NMR hydrothermal carbonization Furfural residue Stock process water
在线阅读 下载PDF
Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline 被引量:2
5
作者 Chen-Xi Bai Feng Shen Xin-Hua Qi 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第5期960-962,共3页
Hydrothermal carbonization of biomass is a promising method to prepare carbonaceous materials.Generally,post physical or chemical activation is necessary to increase surface area and porosity of the carbon.Herein,poro... Hydrothermal carbonization of biomass is a promising method to prepare carbonaceous materials.Generally,post physical or chemical activation is necessary to increase surface area and porosity of the carbon.Herein,porous carbonaceous material(FPC) with large surface area(481.7 m^2/g) and pore volume(0.73 cm^3/g) was prepared directly from hydrothermal carbonization of fructose and phloroglucinol in hydroalcoholic mixture.Structure characteristics of the FPC and its adsorption capacity for a representative antibiotic tetracycline in aqueous solution were investigated.This work provides a green and efficient method to fabricate porous carbonaceous adsorbent that has great potential applications in chemical and environmental fields. 展开更多
关键词 Fructose Carbon materials Porous materials Adsorption hydrothermal carbonization
原文传递
Ni/Carbon Hybrid Prepared by Hydrothermal Carbonization and Thermal Treatment as Support for PtRu Nanoparticles for Direct Methanol Fuel Cell
6
作者 Marcelo Marques Tusi Michele Brandalise +6 位作者 Nataly Soares de Oliveira Polanco Olandir Vercino Correa Antonio Carlos da Silva Juan Carlo Villalba Fauze Jaco Anaissi Almir Oliveira Neto Estevam Vitorio Spinac 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第8期747-751,共5页
Ni/Carbon was prepared in two steps: initially cellulose as carbon source and NiCl2·6H2O as catalyst of the carbonization process were submitted to hydrothermal treatment at 200 ℃ and further to thermal treatme... Ni/Carbon was prepared in two steps: initially cellulose as carbon source and NiCl2·6H2O as catalyst of the carbonization process were submitted to hydrothermal treatment at 200 ℃ and further to thermal treatment at 900 ℃ under argon atmosphere. The obtained material contains Ni nanoparticles with face-centered cubic (fcc) structure dispersed on amorphous carbon with graphitic domains. PtRu/C electrocatalysts (carbon- supported PtRu nanoparticles) were prepared by an alcohol-reduction process using Ni/Carbon as support. The materials were characterized by thermogravimetric analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and tested as anodes in single direct methanol fuel cell (DMFC). The performances of PtRu/C electrocatalysts using Ni/Carbon as support were superior to those obtained for PtRu/C using commercial carbon black Vulcan XC72 as support. 展开更多
关键词 CELLULOSE hydrothermal carbonization Alcohol-reduction process PtRu/C electrocatalysts Direct methanol fuel cell
原文传递
Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization
7
作者 Ao Li Kai Jin +5 位作者 Jinrui Qin Zhaowei Huang Yu Liu Rui Chen Tengfei Wang Junmin Chen 《Journal of Renewable Materials》 SCIE EI 2023年第1期411-422,共12页
Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde... Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges. 展开更多
关键词 BIOMASS hydrothermal carbonization hydrochar PELLETIZATION
在线阅读 下载PDF
Hydrothermal Carbonization of Deciduous Biomass(Alnus incana)and Pelletization Prospects
8
作者 Raghu Kc Indu Babu +3 位作者 Sara Alatalo Jarno Fohr Tapio Ranta Ismo Tiihonen 《Journal of Sustainable Bioenergy Systems》 2017年第3期138-148,共11页
Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting ... Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility. 展开更多
关键词 SUSTAINABLE BIOENERGY hydrothermal carbonization Hydrochar PELLETIZATION
暂未订购
A critical review of hydrochar based photocatalysts by hydrothermal carbonization:synthesis,mechanisms,and applications
9
作者 Zeliang Chen Yanchuan Guo +3 位作者 Lei Luo Zhengang Liu Wei Miao Yu Xia 《Biochar》 CSCD 2024年第1期1309-1342,共34页
Hydrothermal carbonization(HTC)stands out as an eco-friendly,cost-effective method for generating renewable carbon-based materials from biomass.The HTC process yields products such as hydrochars and carbon dots(CDs),p... Hydrothermal carbonization(HTC)stands out as an eco-friendly,cost-effective method for generating renewable carbon-based materials from biomass.The HTC process yields products such as hydrochars and carbon dots(CDs),possessed of notable photocatalytic capabilities due to their unique physicochemical features.Additionally,pairing traditional photocatalysts with hydrochar derivatives elevates their performance,rendering them more effective.Recent times have witnessed a surge in interest in these hydrochar based photocatalysts(HC-photocatalysts).Their appeal stems from multiple attributes:impeccable performance,adaptability to visible light,and adjustable physicochemical properties.This review delves deep into the evolving landscape of these HC-photocatalysts,segmenting them into three distinct categories:hydrochars,hydrochar-based CDs(HC-CDs),and hydrochar-based composites(HC-composites).For each category,we dissect their synthesis routes,unravel the photocatalytic mechanisms,and explore various enhancement strategies.We further traverse their versatile applications,spanning environmental treatment,disinfection,energy conversion,and organic synthesis.In the end,we spotlight the prevailing challenges and uncharted territories in the domain of HC-photocatalysts.In essence,this review serves as a guide,furnishing a theoretical foundation and steering directions for future explorations and tangible implementations of HC-photocatalysts. 展开更多
关键词 BIOMASS hydrothermal carbonization Hydrochars Carbon dots Carbon-based composite PHOTOCATALYSIS
原文传递
Towards a high-quality fertilizer based on algae residues treated via hydrothermal carbonization.Trends on how process parameters influence inorganics
10
作者 Daniela Moloeznik Paniagua Lina Maja Marie Krenz +2 位作者 Judy A.Libra Nathalie Korf Vera Susanne Rotter 《Biochar》 CSCD 2024年第1期1188-1212,共25页
The use of beach-cast macroalgae as a fertilizer(F)or soil amendment(SA)is coming back into focus,due to its highly efficient transformation of CO_(2),nutrients,salts and minerals from its aqueous surroundings into bi... The use of beach-cast macroalgae as a fertilizer(F)or soil amendment(SA)is coming back into focus,due to its highly efficient transformation of CO_(2),nutrients,salts and minerals from its aqueous surroundings into biomass.This research studied the hydrothermal carbonization(HTC)of Fucus vesiculosus macroalgae to hydrochar and evaluated its feasibility for use in soil applications.F.vesiculosus was submitted to HTC following a full factorial design of experiments with three HTC process parameters varied to assess their impact on the hydrochars:temperature(T:160,190,220℃),solid content(%So:20,35%),and process water recirculation(PWrec:yes and no).In general,F.vesiculosus and its hydrochars were rich in nutrients,but also contained regulated heavy metals.Investigation of the partitioning behavior of inorganic elements between the hydrochars and process water showed that heavy metals like Cr,Pb,Co and Cu tended to accumulate in the hydrochar,unaffected by HTC conditions.Nutrients such as P,N,B,and Mn were primarily found in the hydrochar and could be partially influenced to transfer to process water by changing%So and T.The correlation between the mass fractions of 22 elements in the hydrochar and HTC process parameters was studied.T was the most influential parameter,showing a significant positive correlation for eleven elements.%So and PWrec showed inconsistent effects on different elements.When process water was recirculated,some elements decreased(Ca,Cd,Fe)while others increased(K,Na,B,N)in the hydrochar.Assessment against various regulations and standards for F and SA revealed that F.vesiculosus complied with Cd limit values for most rules including the EURF and B,and was regulated only in the RAL for SA,over the limit value.In contrast,the limit value of Cd for both F and SA applications was surpassed in the 13 hydrochars.The contents of N,P,K,S,and Na in the feedstock and hydrochars complied with European F and SA rules,while they were too high for German rules on SA.The other limits for F rules were achieved(under certain HTC process parameters)except for P(lower than the requirements in F for F.vesiculosus and its hydrochars). 展开更多
关键词 Hydrochar hydrothermal carbonization Distribution of elements Limit values Quality assessment Soil application
原文传递
A novel intelligent system based on machine learning for hydrochar multi-target prediction from the hydrothermal carbonization of biomass
11
作者 Weijin Zhang Junhui Zhou +4 位作者 Qian Liu Zhengyong Xu Haoyi Peng Lijian Leng Hailong Li 《Biochar》 CSCD 2024年第1期301-320,共20页
Hydrothermal carbonization(HTC)is a thermochemical conversion technology to produce hydrochar from wet biomass without drying,but it is time-consuming and expensive to experimentally determine the optimal HTC operatio... Hydrothermal carbonization(HTC)is a thermochemical conversion technology to produce hydrochar from wet biomass without drying,but it is time-consuming and expensive to experimentally determine the optimal HTC operational conditions of specific biomass to produce desired hydrochar.Therefore,a machine learning(ML)approach was used to predict and optimize hydrochar properties.Specifically,biochemical components(proteins,lipids,and carbohydrates)of biomass were predicted and analyzed first via elementary composition.Then,accurate single-biomass(no mixture)based ML multi-target models(average R^(2)=0.93 and RMSE=2.36)were built to predict and optimize the hydrochar properties(yield,elemental composition,elemental atomic ratio,and higher heating value).Biomass composition(elemental and biochemical),proximate analyses,and HTC conditions were inputs herein.Interpretation of the model results showed that ash,temperature,and the N and C content of biomass were the most critical factors affecting the hydrochar properties,and that the relative importance of biochemical composition(25%)for the hydrochar was higher than that of operating conditions(19%).Finally,an intelligent system was constructed based on a multi-target model,verified by applying it to predict the atomic ratios(N/C,O/C,and H/C).It could also be extended to optimize hydrochar production from the HTC of single-biomass samples with experimental validation and to predict hydrochar from the co-HTC of mixed biomass samples reported in the literature.This study advances the field by integrating predictive modeling,intelligent systems,and mechanistic insights,offering a holistic approach to the precise control and optimization of hydrochar production through HTC. 展开更多
关键词 BIOMASS hydrothermal carbonization Hydrochar Machine learning Intelligent prediction system
原文传递
Hydrothermal N-doping assisted synthesis of poplar sawdust-derived porous carbons for carbon capture
12
作者 HUANG Ting FENG Bing +5 位作者 LU Peipei ZHANG Zhongliang NIU Qi MA Zonghu LI Kai LU Qiang 《燃料化学学报(中英文)》 北大核心 2025年第8期1191-1202,共12页
To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization a... To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization and K_(2)CO_(3) activation.The effects of different nitrogen sources(urea,piperazine,melamine,and polyaniline)and activation temperatures on the physicochemical features and CO_(2) adsorption characteristics of the porous carbons were systematically investigated.The results indicated that different nitrogen sources showed varying impacts on the CO_(2) uptake of porous carbons,and not all nitrogen sources enhanced the adsorption performance.The urea and piperazine doped porous carbons exhibited relatively low nitrogen contents and specific surface areas.Whereas the melamine doped carbons showed higher nitrogen contents and specific surface areas,but lacked narrow micropores,limiting their CO_(2) adsorption performance.In contrast,PAC-700,prepared using polyaniline as nitrogen source,featured a well-developed pore structure,abundant narrow micropores and pyrrolic-N groups,endowing it with enhanced CO_(2) adsorption capability.At 0℃/1 bar and 25℃/1 bar,the CO_(2) uptake of PAC-700 reached 6.85 and 4.64 mmol/g,respectively.Additionally,PAC-700 maintained a CO_(2) uptake retention ratio of 99%after 5 adsorption-desorption cycles and exhibited good CO_(2)/N_(2) selectivity of 22.4−51.6.These findings highlighted the advantageous CO_(2) adsorption performance of PAC-700,indicating its substantial application potential in the domain of carbon capture. 展开更多
关键词 N-DOPING porous carbon CO_(2)adsorption hydrothermal carbonization
在线阅读 下载PDF
Hydrothermal carbon nanospheres as environmentally friendly,sustainable and versatile additives for water-based drilling fluids
13
作者 Han-Yi Zhong Shu-Sen Li +4 位作者 Da-Qi Li Jun-Bin Jin Chang-Zhi Chen Zheng-Song Qiu Wei-An Huang 《Petroleum Science》 2025年第5期1997-2019,共23页
In this study, hydrothermal carbon nanospheres(HCNs) were prepared by hydrothermal carbonization using glucose as the precursor, and introduced to improve the properties of water-based drilling fluid for the first tim... In this study, hydrothermal carbon nanospheres(HCNs) were prepared by hydrothermal carbonization using glucose as the precursor, and introduced to improve the properties of water-based drilling fluid for the first time. The variation in rheological and filtration characteristics of water-based drilling fluid with varying concentrations of HCNs were compared between the cases before and after thermal aging. The results demonstrated that HCNs had little influence on the rheological properties of bentonite base mud,but could effectively reduce its filtration loss after thermal aging at 220℃ For polymer-based drilling fluid, HCNs also exhibited minor influence on the rheology. The H-B model was the best fitting model for the rheological curves before thermal aging. After hot rolling at 220℃,the viscosity retention rate increased from 29% to 63%-90% with addition of HCNs, and the filtration loss decreased by 78% with 1.0w/v% HCNs. Meanwhile, the polymer-based drilling fluid with 0.5 w/v% HCNs maintained relatively stable rheology and low filtration loss after statically thermal aging at 200℃ for 96 h. For a bentonitefree water-based drilling fluid prepared mainly with modified natural polymers, the viscosity retention increased from 21% to 74% after hot rolling at 150℃ with 0.5 w/v% HCNs, and was further improved when HCNs and potassium formate were used in combination. The mechanism study revealed that,HCNs could trap dissolved oxygen, scavenge the free radicals and cross link with polymers, which prevented thermal oxidative degradation of polymers and improved the thermal stability of water-based drilling fluid. Meanwhile, HCNs could inhibit clay hydration and swelling in synergy with partially hydrolyzed polyacrylamide by physically sealing the micropores, contributing to shale formation stability.Furthermore, HCNs could effectively improve the lubrication and anti-wear performance of drilling fluid.This study indicated that HCNs could act as green, sustainable, and versatile additives in water-based drilling fluid. 展开更多
关键词 Water-based drilling fluid hydrothermal carbon nanosphere Polymer degradation Thermal stability Radical scavenger Sealing properties LUBRICATION
原文传递
Hydrothermal carbonization of agricultural residues:A case study of the farm residues-based biogas plants 被引量:6
14
作者 Samar Seyedsadr Rafat Al Afif Christoph Pfeifer 《Carbon Resources Conversion》 2018年第1期81-85,共5页
Hydrothermal carbonization(HTC)of biomass is a promising method to produce carbonaceous materials.The work presented in this article addresses the application of hydrothermal carbonization(HTC)to produce a solid fuel... Hydrothermal carbonization(HTC)of biomass is a promising method to produce carbonaceous materials.The work presented in this article addresses the application of hydrothermal carbonization(HTC)to produce a solid fuel named HTC-Biochar,whose characteristics are comparable to lignite coal.Biogas sludge(SD),maize silage(MS),and barley silage(BS)as a substrates were hydrothermally carbonized in a 1.5 L batch reactor at 200C for 6 h.The effect of mixing ratios of different substrates on HTC was investigated.Chemical compositions and combustion characteristics of hydro-chars obtained from mono-and co-carbonization were evaluated.Result showed that HTC increased carbon contents and higher heating values(HHV)by 1.4–14.4%and 13–36%,respectively.The evolution of the H/C and O/C atomic ratios indicated that dehydration and decarboxylation occurred during hydrothermal carbonization for all samples.Furthermore,a significant synergistic enhancement was observed for HHV and carbon content.A mixing ratio of 1:1 for BS and SD showed the best performance for co-HTC.In summary,hydrothermal co-carbonization is a promising strategy to tailor high-performance hydro-char for energy applications. 展开更多
关键词 hydrothermal carbonization BIOMASS Hydro-char Energy yield
原文传递
ASSESSMENT OF HEAVY METALS IN HYDROCHAR PRODUCED BY HYDROTHERMAL CARBONIZATION OF DAIRY MANURE
15
作者 B.Brian HE Zheting BI Lide CHEN 《Frontiers of Agricultural Science and Engineering》 CSCD 2023年第3期437-447,共11页
Hydrochar produced from dairy manure is a regulated biosolid if being promoted for agricultural applications thus must have the properties that comply with all environmental standards and government regulations,includ... Hydrochar produced from dairy manure is a regulated biosolid if being promoted for agricultural applications thus must have the properties that comply with all environmental standards and government regulations,including the levels of heavy metals(HMs).In this study,systematic research was conducted on HM levels in hydrochar from dairy manure and on the effects of processing conditions,including processing temperature(180–255℃),holding time(30–120 min)and solid content of manure slurry(2%–15%),through a central composite design and statistical analyses.It was found that HMs can be retained in hydrochar,ranging from 40%to 100%.The processing temperature and solid content in the feed were the most influential process parameters that affected HMs retention in hydrochar.Statistical analysis showed that there was no single optimal point to minimize HMs retained in hydrochar,but there were minimization points at given processing time and solid content.Most HMs concentrations were higher in hydrochar than those initially in dairy manure but were greatly below the thresholds as set by the US government regulations.Thus,hydrochar is feasible for use as a phosphorus-enriched organic fertilizer and/or soil amendment for agricultural applications without serious concerns about HMs it might contain. 展开更多
关键词 heavy metals dairy manure hydrochar hydrothermal carbonization waste management
原文传递
Treatment of wastewater from food waste hydrothermal carbonization via Fenton oxidization combined activated carbon adsorption
16
作者 Tianchi Shen Mi Yan +5 位作者 Yuhao Xia Ruixiong Hu Yayong Yang Cheng Chen Feng Chen Dwi Hantoko 《Waste Disposal and Sustainable Energy》 2022年第3期205-218,共14页
Hydrothermal carbonization(HTC)of food waste can produce hydrochar for further utilization as high-quality fuel or carbon materials,but the by-product of liquid effluent,named HTC wastewater,has a high chemical oxygen... Hydrothermal carbonization(HTC)of food waste can produce hydrochar for further utilization as high-quality fuel or carbon materials,but the by-product of liquid effluent,named HTC wastewater,has a high chemical oxygen demand(COD)content and other organic pollutants.This study focused on the feasibility of Fenton oxidation combined with activated carbon(AC)to reduce COD in HTC wastewater.The effects of different parameters including pH,dosage of hydrogen peroxide,molar ratio of Fe^(2+)/H_(2)O_(2),and reaction time were tested and discussed.Eventually,through the optimized Fenton oxidation(pH=3,H_(2)O_(2)dosage=1.5 mol/L,Fe^(2+)/H_(2)O_(2)=1:15,reaction time=60 min)combined optimized AC adsorption process(AC dosage=30 g/L),the COD value reduced from 42,000 mg/L to 3075 mg/L,indicating a COD removal efficiency of 92.7%and a color removal ratio of 91.9%,respectively.The comparison of GC/MS(gas chromatography mass spectrometer)and FTIR(Fourier transform infrared spectrometer)of liquid residual from different treatment methods also indicated that the types of organic substances in HTC wastewater were significantly reduced through Fenton oxidation and AC adsorption. 展开更多
关键词 Food waste hydrothermal carbonization FENTON ADSORPTION WASTEWATER
原文传递
The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations 被引量:20
17
作者 ZHANG Jin-hong LIN Qi-mei ZHAO Xiao-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第3期471-482,共12页
Innovative measure is a urgent requirement for managing the huge volume of municipal sewage sludge. The hydrothermal carbonation (HTC) shows some potential advantages for using hydrochar as a soil conditioner. The a... Innovative measure is a urgent requirement for managing the huge volume of municipal sewage sludge. The hydrothermal carbonation (HTC) shows some potential advantages for using hydrochar as a soil conditioner. The aim of this work was to investigate the properties of hydrochars, by means of the HTC of municipal sewage sludge under different temperatures (190 and 260~C) and reaction hours (1, 6, 12, 18 and 24 h). The HTC led to the decreases of N, O and H contents by more than 54.6, 37.9 and 10.0%, respectively, and slight changes of C content. The Py-GC-MS analysis showed that a large proportion of fatty acids, in particular hexadecanoic acid, transferred into alkenes, olefins and aromatic compounds. The 13C-NMR and fourier transform infrared spectra (FTIR) confirmed the transformation and changes in chemical structure in which hydrochar contained lower oxygen-containing organic C of O-alkyl, carboxylic and carbonyl C and aliphaticity, but higher aromatic C and aromaticity. The rich hydrophobic functions induced in high positive charges in the charred sludge. The HTC facilitated the pore structure development, proved by higher specific surface area and specific pore volume, with a maximum of 17.30 and 0.83 cm^3 g^-1, respectively. The availabilities of N, P and K markedly reduced during HTC treatment. The activities of most heavy metals were depressed though they accumulated in the hydrochar. Further work is required to investigate the values and risk of the charred sludge amended to soil. 展开更多
关键词 municipal sewage sludge hydrothermal carbonization hydrochar
在线阅读 下载PDF
Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials 被引量:7
18
作者 Neriman Sinan Ece Unur 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期783-789,共7页
Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulos... Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulosic agricultural waste with high initial oxygen content, hazelnut shells, were hydrothermally carbonized and converted into nanostructured ‘hydrochar’. Environmentally benign ceramic/magnesium oxide(Mg O) templating was used to introduce porosity into the hydrochar. Electrochemical performance of the resulting material(HM700) was investigated in aqueous solutions of 1 M H;SO;, 6 M KOH and1 M Na;SO;, using a three-electrode cell. HM700 achieved a high specific capacitance of 323.2 F/g in 1 M H;SO;(at 1 A/g,-0.3 to 0.9 V vs. Ag/Ag Cl) due to the contributions of oxygen heteroatoms(13.5 wt%)to the total capacitance by pseudo-capacitive effect. Moreover, a maximum energy density of 11.1 Wh/kg and a maximum power density of 3686.2 W/kg were attained for the symmetric supercapacitor employing HM700 as electrode material(1 M Na;SO;, E = 2 V), making the device promising for green supercapacitor applications. 展开更多
关键词 BIOMASS Energy storage Hierarchical porosity hydrothermal carbonization SUPERCAPACITOR
在线阅读 下载PDF
Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction 被引量:5
19
作者 R.G.Morais N.Rey-Raap +1 位作者 J.L.Figueiredo M.F.R.Pereira 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期260-270,共11页
Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon na... Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon nanotubes(CNTs) were functionalized with melamine and/or iron(Ⅱ) phthalocyanine(FePc)following three different methodologies:(i) Functionalization with melamine via thermal treatment,(ii)incorporation of the lowest amount of FePc reported in the literature via incipient wetness impregnation followed by thermal treatment and(iii) functionalization with melamine followed by Fe Pc incorporation.The chemical and textural characterization of the prepared materials and their electrochemical assessment allowed to understand the role of microporosity in the incorporation of FePc and its effect on the oxygen reduction reaction(ORR). It was observed that FePc was preferentially incorporated inside the porous structure, especially in samples with more developed microporosity. However, functionalization with melamine modified the textural properties and the surface chemistry, favoring the incorporation of FePc on the surface. Regarding the electrochemical performance, the presence of FePc greatly enhanced the electroactivity of the microporous catalysts. An onset potential of 0.88 V and a four-electron pathway were obtained for glucose-derived carbons, whereas the limiting current densities and kinetic current densities rose by 126% and 222%, respectively, in comparison to the base sample. Notwithstanding, the highest electrochemical activity was observed for the sample prepared with CNTs, due to the synergy between the active metal centers and their highly graphitic carbon structure. The electrochemical parameters of CNTFeP csurpass the commercial Pt/C. The half-wave potential is 40 mV higher, the limiting current density increases by 17%, and a negligible production of by-products(< 1%) was observed. 展开更多
关键词 Iron(Ⅱ)phthalocyanine hydrothermal carbons Carbon nanotubes Oxygen reduction reaction ELECTROCATALYSIS
在线阅读 下载PDF
Effect of glucose concentrations on wear resistance of Al/APC composites prepared by hydrothermal carbonized deposition on chips 被引量:2
20
作者 Yingjie He Hongyu Xu +2 位作者 Maoliang Hu Bo Jiang Zeshengji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第18期82-90,共9页
In this study,a novel method termed hydrothermal carbonized deposition on chips(HTCDC)is proposed to prepare aluminum alloy-amorphous carbon(Al/APC)composites.The influences of glucose concentration in hydrothermally ... In this study,a novel method termed hydrothermal carbonized deposition on chips(HTCDC)is proposed to prepare aluminum alloy-amorphous carbon(Al/APC)composites.The influences of glucose concentration in hydrothermally reaction on the microstructure and wear resistance of the Al/APC composites were thoroughly studied.Amorphous carbon was deposited by HTCDC onto Al–20Si chips as a supporter.The Al/APC composites were prepared by hot extrusion from the chips.The results indicated that a uniform carbon film was successfully synthesized on the surface of the chips,improving the wear resistance of the Al/APC composites.With increasing concentration of glucose solution,the size and the number of delamination on the wear surface and the coefficient of friction decreased,and the wear rate decreased at first and then increased.In addition,the dehydration and carbonization processes in the hydrothermal reaction of glucose were analyzed.A schematic model of the wear surface of the Al/APC composites was established and the wear mechanisms were discussed. 展开更多
关键词 hydrothermal carbonized deposition on chips Amorphous carbon Al matrix composite Wear resistance
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部