期刊文献+
共找到8,996篇文章
< 1 2 250 >
每页显示 20 50 100
Hydrogen-induced amorphization in LaNi_(3-x)Mn_x compounds
1
作者 王伟 陈云贵 +1 位作者 陶明大 吴朝玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第3期443-446,共4页
Effects of Mn content on the hydrogen-induced amorphization of LaNi3-xMnx(x=0.0,0.1,0.3 and 0.5) hydrogen storage alloys were studied systematically.All the alloys were prepared using a rapid quenching and annealing m... Effects of Mn content on the hydrogen-induced amorphization of LaNi3-xMnx(x=0.0,0.1,0.3 and 0.5) hydrogen storage alloys were studied systematically.All the alloys were prepared using a rapid quenching and annealing method.As the charging time increased,the hydrogen-induced amorphization occurred gradually in all the compounds for the first cycle.During the discharge process,discharge potential plateau was not observed in LaNi3.As Mn content increased,however,structural changes were inhibited partly,and a p... 展开更多
关键词 hydrogen storage alloy LaNi3 hydrogen-induced amorphization rare earths
原文传递
Hydrogen-induced amorphization of Zr-Cu-Ni-Al alloy
2
作者 Fu-yu Dong Song-song Lu +7 位作者 Yue Zhang Qing-chun Xiang Hong-jun Huang Xiao-guang Yuan Xiao-jiao Zuo Liang-shun Luo Yan-qing Su Bin-bin Wang 《China Foundry》 SCIE 2017年第2期145-150,共6页
Arc melting was utilized in this study to produce Zr_(55)Cu_(30)Ni_5Al_(10) alloys under mixed atmospheres with various ratios of high-purity hydrogen to argon. The influences of hydrogen addition on the solidificatio... Arc melting was utilized in this study to produce Zr_(55)Cu_(30)Ni_5Al_(10) alloys under mixed atmospheres with various ratios of high-purity hydrogen to argon. The influences of hydrogen addition on the solidification structure and glass-forming ability of Zr_(55)Cu_(30)Ni_5Al_(10) alloy were determined by examining microstructures in different parts of the cast ingots. The results showed that different degrees of crystallization structures were obtained in the ascast button ingots after arc melting in high-purity Ar, and the cross-sectional solidification morphology of arcmelted ingots was found to consist of crystals with varying from the bottom up. By contrast, there were completely amorphous structures in the middle and upper areas of the as-cast button ingots fabricated by adding 10% H_2 to the high-purity Ar atmosphere. A clear solidification interface was found between the crystal and glass in the ascast button ingots, which indicates that hydrogen addition can enhance the Zr_(55)Cu_(30)Ni_5Al_(10) alloy's glass-forming ability. The precise mechanism responsible for this was also investigated. 展开更多
关键词 Zr-Cu-Ni-Al alloy melt hydrogenation solidification structure hydrogen-induced amorphization
在线阅读 下载PDF
In-Depth Understanding the Retained Austenite Stability on the Susceptibility of Multi-Alloying Ultra-Strength Steel to Hydrogen-Induced Cracking
3
作者 Chao Hai Kang Huang +1 位作者 Cuiwei Du Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期691-704,共14页
Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an e... Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation. 展开更多
关键词 hydrogen-induced cracking Multi-alloying ultra-strength steel Retained austenite Deep cryogenic pretreatment
原文传递
The amorphization strategies of two-dimensional transition metal oxide/(oxy)hydroxide nanomaterials for enhanced electrocatalytic water splitting
4
作者 Si-Bin Duan Yu-Qing Wang +3 位作者 Rui Cao Yi-Fei Sun Wen Zhang Rong-Ming Wang 《Rare Metals》 2025年第2期822-840,共19页
Amorphous two-dimensional transition metal oxide/(oxy)hydroxide(2D TMO/TMHO)nanomaterials(NMs)have the properties of both 2D and amorphous materials,displaying outstanding physicochemical qualities.Therefore,they demo... Amorphous two-dimensional transition metal oxide/(oxy)hydroxide(2D TMO/TMHO)nanomaterials(NMs)have the properties of both 2D and amorphous materials,displaying outstanding physicochemical qualities.Therefore,they demonstrate considerable promise for use in electrocatalytic water splitting applications.Here,the primary amorphization strategies for achieving the 2D TMO/TMHO NMs are comprehensively reviewed,including low-temperature reaction,rapid reaction,exchange/doping effect,ligand modulation,and interfacial energy confinement.By integrating these strategies with various physicochemical synthesis methods,it is feasible to control the amorphization of TMO/TMHO NMs while maintaining the distinctive benefits of their 2D structures.Furthermore,it delves into the structural advantages of amorphous 2D TMO/TMHO NMs in electrocatalytic water splitting,particularly emphasizing recent advancements in enhancing their electrocatalytic performance through interface engineering.The challenges and potential future directions for the precise synthesis and practical application of amorphous 2D TMO/TMHO NMs are also provided.This review aims to establish a theoretical foundation and offer experimental instructions for developing effective and enduring electrocatalysts for water splitting. 展开更多
关键词 amorphous nanomaterials 2D materials Transition metal oxide/(oxy)hydroxide Electrocatalytic water splitting
原文传递
Atomistic Investigation of Shock-Induced Amorphization within Micro-shear Bands in Hexagonal Close-Packed Titanium 被引量:1
5
作者 Z.C.Meng K.G.Wang +10 位作者 T.Ali D.Li C.G.Bai D.S.Xu S.J.Li A.H.Feng G.J.Cao J.H.Yao Q.B.Fan H.Wang R.Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第9期1590-1600,共11页
The mechanical response of a single crystal titanium sample against(0001)α surface impact was investigated using molecular dynamics simulation.Remarkably,non-uniform plastic deformation was observed in the sample.At ... The mechanical response of a single crystal titanium sample against(0001)α surface impact was investigated using molecular dynamics simulation.Remarkably,non-uniform plastic deformation was observed in the sample.At high strain rates,amorphization occurred near the edge of the contact region where severe shear strain induced a large number of stacking faults(SFs)and dislocations.In contrast,the central part of the contact region underwent less deformation with significantly fewer dislocations.Moreover,instead of amorphization by consuming SFs and dislocations,there was a gradual increase in the density of dislocations and SFs during the process of amorphization.These local amorphous regions eventually grew into shear bands. 展开更多
关键词 Shock compression amorphization Shear band TITANIUM Molecular dynamics
原文传递
Amorphization transformation in high-entropy alloy FeNiCrCoCu under shock compression
6
作者 Hongcai Xie Zhichao Ma +2 位作者 Wei Zhang Hongwei Zhao Luquan Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期72-79,共8页
High-entropy alloys(HEAs)possess immense potential for structural applications due to their excellent mechanical properties.Deeply understanding underlying deformation mechanisms under extreme regimes is crucial but s... High-entropy alloys(HEAs)possess immense potential for structural applications due to their excellent mechanical properties.Deeply understanding underlying deformation mechanisms under extreme regimes is crucial but still limited,due to the restrictions of existing experimental techniques.In the present study,dynamic deformation behaviors in equiatomic FeNiCrCoCu HEAs were investigated in terms of various shock velocities through nonequilibrium molecular dynamics simulations.The amorphous atoms by amorphization transformation were corroborated to be conducive to dislocation nucleation and propagation.Also,the dominant plasticity pattern was confirmed to be taken over by amorphization under higher velocities,while dislocation slips merely prevailed for lower shock ones.More importantly,for a shock velocity of 1.4 km/s,multi-level deformation modes appearing in deformation,first amorphization and then a combination of amorphization and dislocation slip,was demonstrated to substantially contribute to the shock wave attenuation.These interesting findings provide important implications for the dynamic deformation behaviors and corresponding mechanisms of the FeNiCrCoCu HEA system. 展开更多
关键词 Molecular dynamics High-entropy alloy Shock compression amorphization Dislocations
原文传递
Accelerated intermetallic phase amorphization in a Mg-based high-entropy alloy powder
7
作者 Prince Sharma Purvam Mehulkumar Gandhi +4 位作者 Kerri-Lee Chintersingh Mirko Schoenitz Edward L.Dreizin Sz-Chian Liou Ganesh Balasubramanian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1792-1798,共7页
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe... We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing. 展开更多
关键词 High-entropy alloy High-energy milling Antisite disorder amorphOUS INTERMETALLIC
在线阅读 下载PDF
Enhanced magnetic properties in a Fe-based amorphous alloy via ultrasonic vibration rapid processing 被引量:1
8
作者 Hong-Zhen Li Sajad Sohrabi +4 位作者 Xin Li Lu-Yao Li Jiang Ma Huan-Lin Peng Chao Yang 《Rare Metals》 2025年第4期2853-2860,共8页
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni... In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon. 展开更多
关键词 enhancing soft magnetic properties soft magnetic properties physical propertieshereinwe Fe based amorphous alloy amorphous alloy ribbon ultrasonic vibration rapid processing uvrp which Fe clusters ultrasonic vibration rapid processing
原文传递
Amorphous-rich RuMnO_(x)aerogel with weakened Ru–O covalency for efficient acidic water oxidation 被引量:1
9
作者 Tao Zhao Yunzhen Jia +7 位作者 Qiang Fang Runxin Du Genyan Hao Wenqing Sun Guang Liu Dazhong Zhong Jinping Li Qiang Zhao 《Journal of Energy Chemistry》 2025年第5期414-421,共8页
Ruthenium dioxide(RuO_(2))is one of the most promising acidic oxygen evolution reaction(OER)catalysts to replace the expensive and prevalent iridium(Ir)-based materials.However,the lattice oxygen oxidation induced Ru ... Ruthenium dioxide(RuO_(2))is one of the most promising acidic oxygen evolution reaction(OER)catalysts to replace the expensive and prevalent iridium(Ir)-based materials.However,the lattice oxygen oxidation induced Ru dissolution during OER compromises the activity and stability.Amorphous materials have been identified as a viable strategy to promote the stability of RuO_(2)in acidic OER applications.This study reported a nanoporous amorphous-rich RuMnO_(x)(A-RuMnO_(x))aerogel for efficient and stable acidic OER.Compared with highly crystalline RuMnO_(x),the weakened Ru–O covalency of A-RuMnO_(x)by forming amorphous structure is favorable to inhibiting the oxidation of lattice oxygen.Meanwhile,this also optimizes the electronic structure of Ru sites from overoxidation and reduces the reaction energy barrier of the rate-determining step.As a result,A-RuMnO_(x)aerogel exhibits an ultra-low overpotential of 145 mV at 10 mA cm^(-2)and durability exceeding 100 h,as well as high mass activity up to 153 mA mg^(-1)_(Ru)at 1.5 V vs.reversible hydrogen electrode(RHE).This work provides valuable guidance for preparing highly active and stable Ru-based catalysts for acidic OER. 展开更多
关键词 ELECTROCATALYST A-RuMnO_(x)aerogel amorphous structure COVALENCY Acidic oxygen evolution reaction
在线阅读 下载PDF
Numerical Simulation and Preparation of Micro-gear via Casting Forming Using Zr-based Amorphous Alloy
10
作者 Li Chunling Li Shaobing +2 位作者 Li Xiaocheng Li Chunyan Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第6期1435-1444,共10页
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit... A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness. 展开更多
关键词 Zr-based amorphous alloy MICRO-GEAR numerical simulation CASTING
原文传递
Predicting Macroscopic Properties of Amorphous Monolayer Carbon via Pair Correlation Function
11
作者 Mouyang Cheng Chenyan Wang +4 位作者 Chenxin Qin Yuxiang Zhang Qingyuan Zhang Han Li Ji Chen 《Chinese Physics Letters》 2025年第6期78-101,共24页
Establishing the structure-property relationship in amorphous materials has been a long-term grand challenge due to the lack of a unified description of the degree of disorder.In this work,we develop SPRamNet,a neural... Establishing the structure-property relationship in amorphous materials has been a long-term grand challenge due to the lack of a unified description of the degree of disorder.In this work,we develop SPRamNet,a neural network based machine-learning pipeline that effectively predicts structure-property relationship of amorphous material via global descriptors.Applying SPRamNet on the recently discovered amorphous monolayer carbon,we successfully predict the thermal and electronic properties.More importantly,we reveal that a short range of pair correlation function can readily encode sufficiently rich information of the structure of amorphous material.Utilizing powerful machine learning architectures,the encoded information can be decoded to reconstruct macroscopic properties involving many-body and long-range interactions.Establishing this hidden relationship offers a unified description of the degree of disorder and eliminates the heavy burden of measuring atomic structure,opening a new avenue in studying amorphous materials. 展开更多
关键词 neural network machine learning amorphous materials global descriptorsapplying amorphous monolayer carbonwe degree disorderin amorphous material pair correlation function
原文传递
Amorphous ruthenium nanosheets for efficient hydrazine-assisted water splitting
12
作者 Jiachuan He Haoran Wang +6 位作者 Chen Ling Yi Shi Haohui Hu Qi Jin Shi Zhang Geng Wu Xun Hong 《中国科学技术大学学报》 北大核心 2025年第3期12-18,11,I0001,共9页
The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly effici... The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly efficient catalysts for the HzOR.Herein,we report amorphous ruthenium nanosheets(a-Ru NSs)with a thickness of approximately 9.6 nm.As a superior bifunctional electrocatalyst,a-Ru NSs exhibited enhanced electrocatalytic performance toward both the HzOR and hydrogen evolution reaction(HER),outperforming benchmark Pt/C catalysts,where the a-Ru NSs achieved a work-ing potential of merely-76 mV and a low overpotential of only 17 mV to attain a current density of 10 mA·cm^(-2) for the HzOR and HER,respectively.Furthermore,a-Ru NSs displayed a low cell voltage of 28 mV at 10 mA·cm^(-2) for overall hy-drazine splitting in a two-electrode electrolyzer.In situ Raman spectra revealed that the a-Ru NSs can efficiently promote N‒N bond cleavage,thereby producing more*NH_(2)and accelerating the progress of the reaction. 展开更多
关键词 amorphous structure Ru nanosheets hydrogen evolution reaction hydrazine oxidation reaction *NH_(2)adsorp-tion
在线阅读 下载PDF
Tetrahedral Amorphous Carbon Films for Stainless Steel Bipolar Plates of Proton Exchange Membrane Fuel Cells
13
作者 XIA Zhengwei WU Yucheng +3 位作者 ZHANG Haibin ZHANG Xinfeng LI Canmin LIU Dongguang 《陶瓷学报》 北大核心 2025年第5期918-925,共8页
[Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significant... [Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significantly reduce energy consumption,pollution emissions and reliance on fossil fuels.Bipolar plates are the major part and key component of PEMFCs stack,which provide mechanical strength,collect and conduct current segregate oxidants and reduce agents.They contribute 70-80%weight and 20-30%cost of a whole stack,while significantly affecting the power density.There are three types plates,including metal bipolar plate,graphite bipolar plate and composite bipolar plate.Stainless steel bipolar plates,as one of metal bipolar plate,exhibit promising manufacturability,competitive cost and durability among various metal materials.However,stainless steel would be corroded in the harsh acid(pH 2-5)and humid PEMFCs environment,whereas the leached ions will contaminate the membrane.In addition,the passivated film formed on the surface will increase the interfacial contact resistance(ICR).In order to improve the corrosion resistance and electrical conductivity of steel bipolar plates,surface coatings are essential.Metal nitride coatings,metal carbide coatings,polymer coatings and carbon-based coatings have been introduced in recent years.Carbon-based coatings,mainly including a-C(amorphous Carbon),Ta-C(Tetrahedral amorphous carbon)and DLC(diamond-like carbon),have attracted considerable attention from both academia and industry,owing to their superior performance,such as chemical inertness,mechanical hardness and electrical conductivity.However,Ta-C films as protective coating of PEMFCs have been rarely reported,due to the difficulty in production for industrial application.In this paper,multi-layer Ta-C composite films were produced by using customized industrial-scale vacuum equipment to address those issues.[Methods]Multiple layered Ta-C coatings were prepared by using PIS624 equipment,which assembled filtered cathodic arc evaporation,ion beam and magnetron sputtering into one equipment,while SS304 and silicon specimens were used as substrate for testing and analysis.Adhesion layer and intermediate layer were deposited by using magnetron sputtering at deposition temperature of 150℃and pressure of 3×10^(−1) Pa,while the sputtering current was set to be 5 A and bias power to be 300 V.The Ta-C layer was coated at arc current of 80-100 A,bias voltage of 1500 V and gas flow of 75 sccm.A scanning electron microscope(CIQTEK SEM3200)was used to characterize surface morphology,coating structure and cross-section profile of the coatings.Raman spectrometer(LabRam HR Evolution,HORIBA JOBIN YVON)was used to identify the bonding valence states.Electrochemical tests were performed by using an electrochemical work station(CHI760,Shanghai Chenhua Instrument Co.,Ltd.),with the traditional three electrode system,where saturated Ag/AgCl and platinum mesh were used as the reference electrode and counter electrode,respectively.All samples were mounted in plastic tube and sealed with epoxy resin,with an exposure area of 2.25 cm^(2),serving as the working electrode.Electrochemical measurements were carried out in simulated PEMFCs cathode environment in 0.5 mol·L^(−1) H_(2)SO_(4)+5 ppm F−solution,at operating temperature of 70℃.As the cathode environment was harsher than the anode environment,all the samples are stabilized at the open-circuit potential(OCP)for approximately 30 min before the EIS measurements.ICR between bipolar plates and GDL was a key parameter affecting performance of the PEMFCs stack.The test sample sandwiched between 2 pieces of carbon paper(simulate gas diffusion layer,GDL)was placed between 2 gold-plated copper electrodes at a compaction pressure of 1.4 MPa,which was considered to be the conventional compaction pressure in the PEMFCs.Under the same conditions,the resistance of a single carbon paper was measured as well.The ICR was calculated according to the formula ICR=1/2(R2−R1)×S,where S was the contact area between GDL and coated stainless steel BPPs.All data of ICR were measured three times for averaging.[Results]The coatings deposited by filtered cathodic arc technology were compact and smooth,which reduced coating porosity and favorable to corrosion resistance.The coating thickness of adhesion and intermediate layers were 180 nm,while the protective Ta-C coating thickness was about 300 nm,forming multiple coating to provide stronger protection for metal bipolar plates.Cr,Ti,Nb and Ta coatings were selected as adhesion layers for comparison.According to electrochemical test,Ta and Nb coatings have higher corrosion resistance.However,Ta and Nb materials would be costly when they are used for mass production.Relatively,Cr and Ti materials were cost effective.Hence,a comprehensive assessment was indispensable to decide the materials to be selected as adhesion layer.Ta-TiN and Ti-TiN combined adhesion and intermediate layer exhibited stronger corrosion resistance,with the corrosion current to be less than 10^(−6) A·cm^(−2).Ta-C protective coating deposited by using filtered cathodic arc technology indicated displayed higher corrosion resistance,with the average corrosion density to be about 1.26×10^(−7) A·cm^(−2).Ta-C coating also shown larger contact angle,with the highest hydrophobicity,which was one of the important advantages for Ta-C,in terms of corrosion resistance.According to Raman spectroscopy,the I(D)/I(G)=549.8/1126.7=0.487,with the estimated fraction of sp^(3) bonding to be in the range of 5154%.The intermediate layer TiN has higher conductivity than the CrN layer.Considering cost,corrosion performance and ICR result,the Ti-TiN layer combination is recommended for industrial scale application.[Conclusions]Multiple layer coating structure of Ta-C film had stronger corrosion resistance;with more than 50%sp^(3) content,while it also had larger water contact angle and higher corrosion resistance than DLC film.The filtered arcing deposition technology was able to make the film to be more consistent and stable than normal arcing technology in terms of the preparation of Ta-C.The coating displayed corrosion density of 1.26×10^(−7) A·cm^(−2) and ICR of less than 5 mΩ·cm^(2),far beyond technical target of 2025 DOE(US Department of Energy).This indicated that the mass-production scale coating technology for PEMFC bipolar plates is highly possible. 展开更多
关键词 PEMFC stainless steel bipolar plates tetrahedral amorphous carbon(Ta-C)films corrosion resistance interfacial contact resistance multiple layers coating
在线阅读 下载PDF
Breaking Ordered Atomic Arrangement into Disordered Amorphous Structure for High Electrocatalytic Performance
14
作者 Baoshun Zhang Yifu Yu 《Transactions of Tianjin University》 2025年第1期1-3,共3页
Noble metal-based intermetallic compounds(IMCs)with ordered atomic arrangements exhibit remarkable electrocatalytic activity owing to their unique crystal and electronic structures.During the past years,great advance ... Noble metal-based intermetallic compounds(IMCs)with ordered atomic arrangements exhibit remarkable electrocatalytic activity owing to their unique crystal and electronic structures.During the past years,great advance has been made in the development of noble metal-based IMCs.Recently,Lu and coworkers reported ultrathin“amorphous/intermetallic”(A/IMC)heterophase PtPbBi nanosheets(NSs)with a thickness of 2.5±0.3 nm.The oxidative etching effect caused by the coexistence of O_(2)and Br^(-)ions plays a crucial role in the formation of the IMC and unique two-dimensional structure with irregular shapes and curled edges.This study shows that fabricating an A/IMC heterophase structure with a multimetallic composition can effectively enhance the catalytic performances of noble metal-based electrocatalysts. 展开更多
关键词 amorphous structure ELECTROCATALYTIC PtPbBi nanosheets
在线阅读 下载PDF
Database of ternary amorphous alloys based on machine learning
15
作者 Xuhe Gong Ran Li +2 位作者 Ruijuan Xiao Tao Zhang Hong Li 《Chinese Physics B》 2025年第1期129-133,共5页
The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery te... The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery technology,among other fields.Since not all materials can be synthesized into an amorphous structure,the composition design of amorphous materials holds significant importance.Machine learning offers a valuable alternative to traditional“trial-anderror”methods by predicting properties through experimental data,thus providing efficient guidance in material design.In this study,we develop a machine learning workflow to predict the critical casting diameter,glass transition temperature,and Young's modulus for 45 ternary reported amorphous alloy systems.The predicted results have been organized into a database,enabling direct retrieval of predicted values based on compositional information.Furthermore,the applications of high glass forming ability region screening for specified system,multi-property target system screening and high glass forming ability region search through iteration are also demonstrated.By utilizing machine learning predictions,researchers can effectively narrow the experimental scope and expedite the exploration of compositions. 展开更多
关键词 amorphous alloys machine learning DATABASE
原文传递
Structural transformation from crystalline to amorphous states to boost sodium storage properties of NaVOPO_(4) cathode
16
作者 Ya-Nan Zhao Ke-An Chen +5 位作者 Li-Xiao Han Meng-Meng Ma Hui Li Xin-Ping Ai Yong-Jin Fang Yu-Liang Cao 《Rare Metals》 2025年第10期7230-7241,共12页
Polyanionic materials are considered one of the most promising cathode materials for sodium-ion batteries because of the stable structure framework and high working voltage.However,most polyanionic materials possess l... Polyanionic materials are considered one of the most promising cathode materials for sodium-ion batteries because of the stable structure framework and high working voltage.However,most polyanionic materials possess limited sodium storage sites and have to undergo complex local structure evolution during charge/discharge.Herein,we conducted a systematic investigation into the impact of structural forms of NaVOPO_(4)on the electrochemical properties.Amorphous and crystalline NaVOPO_(4)are synthesized through a controlled reflux reduction method,and the amorphous NaVOPO_(4)(a-NVOP)demonstrates much better electrochemical performance compared to the crystalline counterpart.Specifically,the a-NVOP electrode delivers high reversible capacity(142 mAh g^(-1)at 14.5 mA g^(-1),close to the theoretical capacity of 145 mAh g^(-1)),high energy density(497 Wh kg^(-1)based on cathode material)and remarkable cyclability with capacity retention of 80%after 500 cycles.In situ and ex situ experimental analyses and theoretical calculations reveal that the superior performance is primarily due to the maintaining of the amorphous state during the charge/discharge process to endow high stability and accelerated intercalation/deintercalation of large-sized Na^(+)without lattice constraints.Furthermore,the amorphous cathode materials show promising electrochemical properties in lithium-,potassium-and zinc-ion batteries,highlighting their broad adaptability and potential across various battery systems. 展开更多
关键词 amorphOUS CRYSTALLINE NaVOPO_(4) POLYANIONS Sodium-ion batteries
原文传递
Mechanisms of grain refinement and improved kinetic property of nanocrystalline Mg-Ni-La hydrogen storage alloys prepared by nanocrystallization of amorphous
17
作者 Y.M.Li Z.C.Liu +6 位作者 X.Dong Y.P.Ji C.J.Shi G.F.Zhang Y.Z.Li J.Kennedy F.Yang 《Journal of Magnesium and Alloys》 2025年第3期1364-1381,共18页
Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain si... Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain size,microstructural stability,and hydrogen storage properties.Crystallization kinetics,along with in-situ high-energy XRD characterization,revealed a concentrated and synchronous crystallization of Mg_(2)Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content.The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg_(2)Ni and RE-Mg-Ni ternary phases,as assessed by the thermodynamic Miedema model.Significant secondary phase pinning effect,arising from the high likelihood of well-matching phase structures between Mg_(2)Ni,LaMg_(2)Ni,and LaMgNi_(4),was validated through both the edge-to-edge matching model prediction and experimental observation.Thefine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect.Improved activation performance and cycling stability were observed,stemming from grain refinement and excellent microstructural stability.Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route.We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability. 展开更多
关键词 Hydrogen storage Mg based alloys Crystallization NANOCRYSTALLINE amorphous alloy
在线阅读 下载PDF
Purification of amorphous boron powder through the removal of impurity magnesium and its physicochemical properties
18
作者 Shuxuan Lv Zhen Cao Jijun Wu 《Defence Technology(防务技术)》 2025年第9期40-50,共11页
At present,the most common preparation method of amorphous boron powder is magnesium thermal reduction method,but the amorphous boron powder obtained by this method mostly contains impurities such as magnesium and oxy... At present,the most common preparation method of amorphous boron powder is magnesium thermal reduction method,but the amorphous boron powder obtained by this method mostly contains impurities such as magnesium and oxygen which are difficult to remove,and these impurities will seriously affect the application of amorphous boron powder and need to be strictly removed.In this research,the acid-insoluble impurities were modified through sintering and quenching,while the magnesium impurities were optimized via ultrasonic acid leaching.We observed that the quenching temperature played a crucial role in determining the efficiency of magnesium impurity removal.The results show that the magnesium content in amorphous boron powder can be reduced from 5.67%to 2.40%by quenching the amorphous boron powder at 800°C and using ultrasonic assisted acid leaching.Furthermore,the oxidation reaction of boron is influenced by the powder's particle size and specific surface area,with the effective activation energy being intimately tied to both these factors.Post-quenching and acid leaching,we observed an increase in the specific surface area of the boron powder samples,leading to enhanced activity.In conclusion,our study presents an effective strategy to mitigate magnesium impurities and elevate the performance of amorphous boron powder,offering promising avenues for advancing its utilization across diverse industries. 展开更多
关键词 amorphous boron powder Magnesium heat reduction QUENCHING PURIFICATION Activity
在线阅读 下载PDF
Design and preparation of amorphous carbon nanotubes reinforced copper
19
作者 Xiaona Ren Wentao Wu +1 位作者 Zhipei Chen Changchun Ge 《Chinese Physics B》 2025年第4期207-210,共4页
Carbon nanotubes(CNTs)reinforced copper(CNTs/Cu)is one of the most promising and extensively researched materials for replacing traditional Cu-based materials in high-load and high-current applications,particularly wi... Carbon nanotubes(CNTs)reinforced copper(CNTs/Cu)is one of the most promising and extensively researched materials for replacing traditional Cu-based materials in high-load and high-current applications,particularly within the aerospace industry.Amorphous carbon nanotubes(aCNTs)are a type of carbon nanotubes characterized by the presence of mesopores distributed across their amorphous sidewalls,facilitating connectivity between the hollow core and the external environment.Therefore,we propose utilizing aCNTs as a reinforcing agent for Cu.The mesoporous structure of aCNTs facilitates the interpenetration of Cu into the aCNTs,thereby maintaining the continuity of the matrix properties.Experimental results demonstrate that Cu effectively penetrates the mesoporous sidewalls of aCNTs.Both pure Cu and aCNTs-reinforced Cu exhibit comparable electrical conductivity,while the hardness of the aCNTs/Cu composite is significantly enhanced.Additionally,both the density and porosity of aCNTs/Cu are lower than those of pure Cu,and the introduction of aCNTs helps to reduce the sintering temperature. 展开更多
关键词 amorphous carbon nanotubes copper-based composite interpenetrating composites MESOPOROUS CONDUCTIVITY
原文传递
Nacre-inspired robust antifouling amorphous coating via in-situ constructing 3D interconnected diffusion channels
20
作者 Tian-Xiao Liang Peng-Yu Zhu +3 位作者 Muhammad Arslan Hafeez Muhammad Yasir Cheng Zhang Lin Liu 《Journal of Materials Science & Technology》 2025年第10期135-145,共11页
Achieving a delicate synergy between mechanical robustness and antifouling attributes in coatings remains a formidable challenge for marine applications. Inspired by the assembly of nacre, we present a novel approach ... Achieving a delicate synergy between mechanical robustness and antifouling attributes in coatings remains a formidable challenge for marine applications. Inspired by the assembly of nacre, we present a novel approach to fabricate a nacre-like metallic coating. This coating comprises an amorphous matrix with excellent anti-corrosion and anti-wear properties, as well as Cu-rich 3D interconnected channels for antifouling function. The coating is produced by high velocity oxygen fuel (HVOF) thermal spraying of surface-modified Fe-based amorphous powders with a Cu-layer. The resulting coating exhibits exceptional mechanical robustness, including high resistance to erosion, abrasion, and impact, surpassing conventional polymer antifouling coatings. Furthermore, the controlled Cu+ leaching capability of the in-situ constructed 3D interconnected diffusion channels, facilitated by the Cu-rich intersplats, contributes to the remarkable antifouling performance. This includes nearly 100 % resistance to bacterial adhesion after 1 day of immersion and over 98 % resistance to algal attachment after 7 d of immersion, resulting in a prolonged service lifetime. Notably, even after 200 cycles of wear damage, the Cu-modified amorphous coating still maintains its excellent antifouling properties. The Cu-rich intersplats play a critical role in transporting and sustainably leaching Cu ions, thereby accounting for the outstanding antifouling performance. Ultimately, we aim to advance the design of high-performance coatings suited for diverse marine applications, where both the mechanical robustness and antifouling properties are essential. 展开更多
关键词 amorphous coating Nacre-like structure Antifouling Anti-wear Thermal spray
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部