The crystal structures and hydrogenation behavior of the (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0, 0.1, 0.2, 0.3 and 0.4) alloys were investigated. The new phase (Ca,Sr)E(Al,Zn) was found whenx 〉 0.1. (Ca, Sr)E(A...The crystal structures and hydrogenation behavior of the (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0, 0.1, 0.2, 0.3 and 0.4) alloys were investigated. The new phase (Ca,Sr)E(Al,Zn) was found whenx 〉 0.1. (Ca, Sr)E(Al,Zn) crystallizes in space group 14/mmm (A-139). The lattice parameters were calculated to be a = b = 1.1616(2) nm, c = 1.6422(4) nm. Zn atoms occupy the 8h and 16n sites together with Al atoms. The (Ca0.9Sr0.1)8Al3 alloy only contains a single Ca8Al3 phase. The (Ca0.9Sr0.1)8(Al1-xZnx)3 alloys consist of Ca8Al3, CasZn3, Ca and (Ca,Sr)2(Al,Zn) phases when x is from 0.1 to 0.3. As x increasing to 0.4, the alloy consists of (Ca,Sr)E(Al,Zn), Ca8Zn3 and Ca. The hydrogenated (Ca0.9Sr0.1)8Al3 and (Ca0.9Sr0.1)8(Al0.9Zn0.1)3 samples consist of CartE and Al. The (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0.2, 0.3 and 0.4) samples can be hydrogenated into CaH2, Al and CaZnl3 under a hydrogen pressure of 5 MPa at 473 K.展开更多
This paper introduces a new titanium alloys surface strengthening treatment by using the arc-added glow discharge plasmas non-hydrogen Carburization technique. High purity and high strength graphite is selected as coo...This paper introduces a new titanium alloys surface strengthening treatment by using the arc-added glow discharge plasmas non-hydrogen Carburization technique. High purity and high strength graphite is selected as cooling cathode arc source for supplying carbon atoms and particle, which migrate to the titanium alloy(Ti6A14V) surface and form modified layer. Thus, the hydrogen embrittlement is avoided while the tribological behavior of the titanium alloy surface is improved in the respects of anti-friction and anti-wear ability.The tribological behavior of the modified layer under dry sliding against SAE52100 steel was evaluated on a ball-on-disc test rig. The results showed that the modified layer obtained a thickness of 30u,m at 980°C, 30minutes. The microhardness of the Ti6A14V alloy surface attained 936 HV, which was much larger than that of the T16A14V alloy. The TJ6A14V alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface modified layer experienced much abated adhesion wear and scuffing under the same testing condition. This could be attributed to the carbon element with different modalities exists in the modified layer. The modified layer showed good friction-reducing and fair anti-wear ability in dry sliding against the steel. Using the SEM, XRD and XPS, the phase structure and morphology of the Carburization modified layer was analyzed.展开更多
Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray...Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.展开更多
In the present work, the blend of poly(butylene succinate) (PBS) and bisphenol A (BPA) was prepared by solution mixing, and the intermolecular interactions between the two components were characterized by a comb...In the present work, the blend of poly(butylene succinate) (PBS) and bisphenol A (BPA) was prepared by solution mixing, and the intermolecular interactions between the two components were characterized by a combination of nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The results showed that intermolecular hydrogen-bonding forms between the carbonyl group of PBS and phenol hydroxyl of BPA. With the increase of BPA content, more hydrogen bonds were formed. The effect of hydrogen bonding on the crystallization behavior of PBS was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The results showed that the overall isothermal crystallization kinetics and the spherulite growth rate of PBS decrease with the increase of BPA content, while the PBS spherulite size increases with BPA content.展开更多
The present work focuses on the structural stability upon hydrogenation of three typical La-Mg-Ni-based alloys: La2 MgNi9, LaaMgNi14 and La4MgNi19. Structural changes during gaseous and electrochemical cycles were ch...The present work focuses on the structural stability upon hydrogenation of three typical La-Mg-Ni-based alloys: La2 MgNi9, LaaMgNi14 and La4MgNi19. Structural changes during gaseous and electrochemical cycles were characterized, and the influence of the structure distortion on the hydrogen storage properties was concerned. Hydrogen-induced amor- phization (HIA) and disproportionation of the three alloys have occurred during both the gaseous and electrochemical cycles. Structural stability of the phase structures in the La-Mg-Ni system is found to follow the order: LaNi5- 〉 (La,Mg)5Ni19 〉 (La,Mg)2Ni7 〉 (La,Mg)Ni3 〉 (La,Mg)Ni2. HIA increases thermal stability of the metal hydrides and difficulty to dehydrogenation and leads to degradation of both the gaseous and electrochemical capacities. Interestingly, LaEMgNi9 with poor stability presents elevated discharge capability even at 60 ℃ which can be attributed to increase in the hydrogen desorption capability and inhibition of the self-discharge induced by severe HIA at higher temperatures. In addition, HIA in the electrochemical reactions is obviously weaker than the extent during the gaseous cycles, which is mainly due to the slower hydrogenation speed. The development of HIA in the gaseous and electrochemical process is considered to follow the direct and gradual modes, respectively.展开更多
The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400...The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.展开更多
The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activ...The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6A1-2Zr-IMO-IV alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃ can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-IMO-IV alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ·mol^-1 and 390 kJ-mol^-1, respectively, at 800 ℃ and at strain rate 8.3×10^4 s^-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10^-4 s^-1 to 8.3×10^-2 s^-1.展开更多
基金This study was financially supported by the National Natural Science Foundation of China (No.50371001)the Scientific Research Foundation for the Candidates of Academic Leaders,Education Department of Anhui Province of China (No.2005hbz08).
文摘The crystal structures and hydrogenation behavior of the (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0, 0.1, 0.2, 0.3 and 0.4) alloys were investigated. The new phase (Ca,Sr)E(Al,Zn) was found whenx 〉 0.1. (Ca, Sr)E(Al,Zn) crystallizes in space group 14/mmm (A-139). The lattice parameters were calculated to be a = b = 1.1616(2) nm, c = 1.6422(4) nm. Zn atoms occupy the 8h and 16n sites together with Al atoms. The (Ca0.9Sr0.1)8Al3 alloy only contains a single Ca8Al3 phase. The (Ca0.9Sr0.1)8(Al1-xZnx)3 alloys consist of Ca8Al3, CasZn3, Ca and (Ca,Sr)2(Al,Zn) phases when x is from 0.1 to 0.3. As x increasing to 0.4, the alloy consists of (Ca,Sr)E(Al,Zn), Ca8Zn3 and Ca. The hydrogenated (Ca0.9Sr0.1)8Al3 and (Ca0.9Sr0.1)8(Al0.9Zn0.1)3 samples consist of CartE and Al. The (Ca0.9Sr0.1)8(Al1-xZnx)3 (x = 0.2, 0.3 and 0.4) samples can be hydrogenated into CaH2, Al and CaZnl3 under a hydrogen pressure of 5 MPa at 473 K.
文摘This paper introduces a new titanium alloys surface strengthening treatment by using the arc-added glow discharge plasmas non-hydrogen Carburization technique. High purity and high strength graphite is selected as cooling cathode arc source for supplying carbon atoms and particle, which migrate to the titanium alloy(Ti6A14V) surface and form modified layer. Thus, the hydrogen embrittlement is avoided while the tribological behavior of the titanium alloy surface is improved in the respects of anti-friction and anti-wear ability.The tribological behavior of the modified layer under dry sliding against SAE52100 steel was evaluated on a ball-on-disc test rig. The results showed that the modified layer obtained a thickness of 30u,m at 980°C, 30minutes. The microhardness of the Ti6A14V alloy surface attained 936 HV, which was much larger than that of the T16A14V alloy. The TJ6A14V alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface modified layer experienced much abated adhesion wear and scuffing under the same testing condition. This could be attributed to the carbon element with different modalities exists in the modified layer. The modified layer showed good friction-reducing and fair anti-wear ability in dry sliding against the steel. Using the SEM, XRD and XPS, the phase structure and morphology of the Carburization modified layer was analyzed.
基金Founded by the National Natural Science Foundation of China(51371094 and 51161015)the Hebei University Experiment Center Project(sy2015091)
文摘Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.
基金the National Natural Science Foundation of China(Nos.51063004,21264012)China National Funds for Distinguished Young Scientists(No.50925313)
文摘In the present work, the blend of poly(butylene succinate) (PBS) and bisphenol A (BPA) was prepared by solution mixing, and the intermolecular interactions between the two components were characterized by a combination of nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The results showed that intermolecular hydrogen-bonding forms between the carbonyl group of PBS and phenol hydroxyl of BPA. With the increase of BPA content, more hydrogen bonds were formed. The effect of hydrogen bonding on the crystallization behavior of PBS was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The results showed that the overall isothermal crystallization kinetics and the spherulite growth rate of PBS decrease with the increase of BPA content, while the PBS spherulite size increases with BPA content.
基金supported financially by the National Natural Science Foundation of China (No.51761032)the University Foundation of Inner Mongolia (No.NJZZ18142)
文摘The present work focuses on the structural stability upon hydrogenation of three typical La-Mg-Ni-based alloys: La2 MgNi9, LaaMgNi14 and La4MgNi19. Structural changes during gaseous and electrochemical cycles were characterized, and the influence of the structure distortion on the hydrogen storage properties was concerned. Hydrogen-induced amor- phization (HIA) and disproportionation of the three alloys have occurred during both the gaseous and electrochemical cycles. Structural stability of the phase structures in the La-Mg-Ni system is found to follow the order: LaNi5- 〉 (La,Mg)5Ni19 〉 (La,Mg)2Ni7 〉 (La,Mg)Ni3 〉 (La,Mg)Ni2. HIA increases thermal stability of the metal hydrides and difficulty to dehydrogenation and leads to degradation of both the gaseous and electrochemical capacities. Interestingly, LaEMgNi9 with poor stability presents elevated discharge capability even at 60 ℃ which can be attributed to increase in the hydrogen desorption capability and inhibition of the self-discharge induced by severe HIA at higher temperatures. In addition, HIA in the electrochemical reactions is obviously weaker than the extent during the gaseous cycles, which is mainly due to the slower hydrogenation speed. The development of HIA in the gaseous and electrochemical process is considered to follow the direct and gradual modes, respectively.
文摘The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.
基金supported by the National Natural Science Foundation of China(No.50671028)
文摘The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6A1-2Zr-IMO-IV alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃ can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-IMO-IV alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ·mol^-1 and 390 kJ-mol^-1, respectively, at 800 ℃ and at strain rate 8.3×10^4 s^-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10^-4 s^-1 to 8.3×10^-2 s^-1.