期刊文献+
共找到8,581篇文章
< 1 2 250 >
每页显示 20 50 100
Interpenetrated Chitosan-Poly(Acrylic Acid-Co-Acrylamide) Hydrogels. Synthesis, Characterization and Sustained Protein Release Studies 被引量:1
1
作者 Michel Bocourt Povea Waldo Argüelles Monal +3 位作者 Juan Valerio Cauich-Rodríguez Alejando May Pat Nancy Badas Rivero Carlos Peniche Covas 《Materials Sciences and Applications》 2011年第6期509-520,共12页
Interpenetrated polymer networks of chitosan (CHI), polyacrylic acid (PAA) and polyacrylamide (PAM) were prepared by free radical polymerization. These hydrogels were either washed with double distilled water (CHI/PAA... Interpenetrated polymer networks of chitosan (CHI), polyacrylic acid (PAA) and polyacrylamide (PAM) were prepared by free radical polymerization. These hydrogels were either washed with double distilled water (CHI/PAA/PAM) A or hydrolyzed with 1M sodium hydroxide (NaOH), (CHI/PAA/PAM) S. Both types of hydrogels were characterized by infrared spectroscopy, microstructural techniques and compressive mechanical testing. Finally, hydrogels were loaded with bovine serum albumin (BSA) and release followed at different pHs. Infrared spectra analysis showed correspondence between hydrogels and monomer feed compositions. Hydrolyzed hydrogels, had increased water content and pH swelling dependence. Compression modulus of swelled hydrolyzed hydrogels decreased with increasing equilibrium water content. Higher BSA loadings were achieved on hydrolyzed hydrogels due to their high water content and porosity. Protein release from hydrogels was low (≤ 20% after 10 hours) at pH 1.2, but sustained release was observed at pH 6.8 and 7.4. The integrity of the protein released at 6.8 and 7.4 by hydrolyzed hydrogels was unaffected. The hydrogles showed no cytotoxic effects on human skin dermal fibroblasts as determined by MTT assay except for two compositions of (CHI/PAA/PAM) A samples, which after seven days presented a viability lower than 80% respect to the control. 展开更多
关键词 hydrogels Controlled Release Protein POLYACRYLAMIDE Interpenetrated Polymer
在线阅读 下载PDF
Polymeric biomaterial hydrogels. I. Behavior of some ionotropic cross-linked metal-alginate hydrogels especially copper-alginate membranes in some organic solvents and buffer solutions
2
作者 Refat Hassan Fahd Tirkistani +3 位作者 Ishaq Zaafarany Ahmed Fawzy Mohamed Khairy Sayed Iqbal 《Advances in Bioscience and Biotechnology》 2012年第7期845-854,共10页
The change in rheological and mechanical properties for some ionotropic cross-linked metal-alginate hydrogel complexes in particularly copper-alginate membranes in the presence of some organic solvents (benzene, tolue... The change in rheological and mechanical properties for some ionotropic cross-linked metal-alginate hydrogel complexes in particularly copper-alginate membranes in the presence of some organic solvents (benzene, toluene, xylene, carbon tetrachloride, ace-tone, chloroform, dichloroethane, isobutyl alcohol and ethyl alcohol) or buffer solutions (acetates, borates and universal buffers) have been investigated. The experimental results showed a remarkable tendency of the studied hydrogels for shrinking in polar solvents, whereas no influence was observed for the hydrogels in non-polar solvents. On the other hand, the gels were found to swell or shrink in the buffer solutions depending on the pH of the buffer used. The swelling extent for hydrogel spheres was found to decrease in the order Cu > Ba ≈ Ca > Zn > Pb-alginates in universal buffers of pH = 5.33. The factors affected this behavior have been examined and discussed. 展开更多
关键词 Biomaterials hydrogels Swelling SHRINKING Metal-Alginates BIOCATALYSTS
在线阅读 下载PDF
Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation 被引量:1
3
作者 Meng-Chen Huang Chao-Hua Xue +8 位作者 Zhongxue Bai Jun Cheng Yong-Gang Wu Chao-Qun Ma Li Wan Long Xie Hui-Di Wang Bing-Ying Liu Xiao-Jing Guo 《Journal of Energy Chemistry》 2025年第2期175-190,I0005,共17页
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management... All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons. 展开更多
关键词 Thermochromic hydrogel Self-adaptive thermal management Radiative cooling Spectral modulation ENERGY-SAVING
在线阅读 下载PDF
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
4
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 Laser processing Conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
在线阅读 下载PDF
Bio-inspired multifunctional hydrogels with adhesive,anti-bacterial,anti-icing and sensing properties
5
作者 Yuanmao Fu Ziang Wang +6 位作者 Kefan Wu Feiyang Li Xian Zhang Hongyuan Cui Xiaolin Wang Hui Guo Yuezhong Meng 《Chinese Chemical Letters》 2025年第7期456-461,共6页
Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical applicatio... Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios. 展开更多
关键词 hydrogels MULTIFUNCTION Mechanical performance ADHESIVE Anti-bacterial activity ANTI-ICING Wearable sensors
原文传递
Sequentially triggered triple-responsive hydrogels for targeted regulation of inflammation and angiogenesis in diabetic-infected wound healing
6
作者 Shuai Shao Anni Zhu +10 位作者 Yi Chai Zheming Song Yutong Chen Yi Xie Yicheng Lv Xiaoxun Huang Wenjun Wang Jingchao Li Qin Zhang Deping Kong Qian Tan 《Nano Research》 2025年第11期849-864,共16页
Bacterial infection,excessive inflammatory response,and impaired angiogenesis caused by the hyperglycemic microenvironment of diabetic wounds are the primary factors of non-healing wounds.Most contemporary wound repai... Bacterial infection,excessive inflammatory response,and impaired angiogenesis caused by the hyperglycemic microenvironment of diabetic wounds are the primary factors of non-healing wounds.Most contemporary wound repair materials passively release loaded drugs,resulting in poor therapeutic outcomes.In this study,we designed sequentially triggered triple-responsive hydrogels containing alginate(ALG)-phenylboronic acid(PBA),copper polydopamine(Cu-PDA),metformin(MET),and deferoxamine mesylate(DFO)to cover the continuous process of diabetic-infected wound healing and improve the wound microenvironment through warming in the infectious phase and on-demand drug release in the inflammatory and proliferative phase.The hydrogels exhibited good adhesivity,injectability,self-healing ability,and biocompatibility.The hydrogels show remarkable photothermal responsiveness due to the presence of PDA.Studies showed that appropriate high temperatures and the release of Cu2+resulted in the hydrogels displaying excellent bactericidal properties in the infectious phase.Furthermore,the instability of the phenyl borate bond in a hyperglycemic and acidic microenvironment enables the glucose/pH responsiveness of the release of MET and DFO from the hydrogels.Mechanistic studies have shown that the hydrogels could suppress the activity of the NOD-,LRR-,and pyrin structural domain-containing protein 3(NLRP3)/caspase-1/GasderminD(GSDMD)/IL-1βpathway and activate the hypoxia-inducible factor 1 alpha(HIF-1α)/vascular endothelial growth factor(VEGF)pathway.These effects enabled the hydrogels to promote the healing of diabetic-infected wounds. 展开更多
关键词 diabetic-infected wounds sequentially triggered triple-responsive hydrogels antibacterial ANTI-INFLAMMATORY pro-angiogenesis
原文传递
Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation
7
作者 Chaojian Xu Juxin Yin +5 位作者 Sihong Wang Yue Pan Qianhe Zhang Ningkang Xie Shuo Yang Shaowu Lv 《Chinese Chemical Letters》 2025年第7期543-546,共4页
The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laboriou... The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laborious.A self-initiating system consisting of transition metals and acetylacetone has been successfully developed.The system is capable of initiating free radical polymerization of hydrogels at room temperature under aerobic conditions,which is attributed to carbon radicals generated by the oxidation of acetylacetone.Some of these carbon radicals reduce oxygen to generate hydroxyl radicals,which together induce self-coagulation of hydrogels.The polymerization system was effective for a variety of monomer and hydrogel swelling and shrinking schemes,and the reaction remained successful when exposed to saturated oxygen.In conclusion,the results demonstrate that the present strategy is an effective approach to addressing the challenge of deoxygenation in polymer synthesis,and provides a convenient method for synthesizing multifunctional hydrogels under ambient conditions. 展开更多
关键词 OXYGEN Radical polymerization hydrogels Redox reactions ACETYLACETONE Transition metal
原文传递
High-strength self-healing multi-functional hydrogels with worm-like surface through hydrothermal-freeze-thaw method
8
作者 Liping Li Wanhui Shi +5 位作者 Yang Yang Yunzhen Chang Ying Zhang Shujie Liu Sheng Zhu Gaoyi Han 《Journal of Materials Science & Technology》 2025年第19期304-314,共11页
Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile stren... Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile strength and susceptibility to fracture because of the restricted microstructure design.Herein,we pro-pose a hydrothermal-freeze-thaw method to construct high-strength self-healing hydrogels with even in-terconnected networks and distinctive wrinkled surfaces.The integration of the wrinkled outer surface with the three-dimensional internal network confers the self-healing hydrogel with enhanced mechan-ical strength.This hydrogel achieves a tensile strength of 223 kPa,a breaking elongation of 442%,an adhesion strength of 57.6 kPa,and an adhesion energy of 237.2 J m-2.Meanwhile,the hydrogel demon-strates impressive self-repair capability(repair efficiency:93%).Moreover,the density functional theory(DFT)calculations are used to substantiate the stable existence of hydrogen bonding between the PPPBG hydrogel and water molecules which ensures the durability of the PPPBG hydrogel for long-term applica-tion.The measurements demonstrate that this multifunctional hydrogel possesses the requisite sensitivity and durability to serve as a strain sensor,which monitors a spectrum of motion signals including subtle vocalizations,pronounced facial expressions,and limb articulations.This work presents a viable strategy for healthcare monitoring,soft robotics,and interactive electronic skins. 展开更多
关键词 hydrogels High strength SELF-HEALING Hydrothermal-freeze-thaw method Strain sensors
原文传递
Electrically conductive“SMART”hydrogels for on-demand drug delivery
9
作者 Soumajyoti Ghosh Nikhil Kumar Santanu Chattopadhyay 《Asian Journal of Pharmaceutical Sciences》 2025年第1期26-47,共22页
In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typica... In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure.Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering.Consequently,researchers are developing combinatorial strategies to develop electrically responsive“SMART”systems to improve the therapeutic efficacy of biomolecules.Electrically conductive hydrogels have been explored for various drug delivery applications,enabling higher loading of therapeutic cargo with on-demand delivery.This review emphasizes the properties,mechanisms,fabrication techniques and recent advancements of electrically responsive“SMART”systems aiding on-site drug delivery applications.Additionally,it covers prospects for the successful translation of these systems into clinical research. 展开更多
关键词 hydrogels Conductive polymers Electrically conductive hydrogels On-demand drug delivery
暂未订购
Light-driven Self-sustained Rolling of Cylinder Hydrogels with Fast and Anisotropic Responses
10
作者 Qing-Li Zhu Han-Lei Cheng +7 位作者 Wei-Xuan Liu Yin-Bin Xiao Xin-Lei Wu Josef Breu Wei Hong Zhi-Jian Wang Qiang Zheng Zi-Liang Wu 《Chinese Journal of Polymer Science》 2025年第4期548-555,共8页
Achieving continuous motions typically requires dynamic external stimuli for cyclic deformation,or crafted geometries with intricate modules to form a self-regulated feedback loop upon static stimulation.It is still a... Achieving continuous motions typically requires dynamic external stimuli for cyclic deformation,or crafted geometries with intricate modules to form a self-regulated feedback loop upon static stimulation.It is still a grand challenge to realize self-sustained motion in soft robots subject to unchanging environment,without complex geometry or a control module.In this work,we report soft robots based on an anisotropic cylindrical hydrogel showing self-regulated,continuous rolling motions under constant light irradiation.The robots are animated by mirror-symmetry-breaking induced by photothermal strain gradient.The self-sustained motion is attributed to the fast and reversible deformation of the gel and the autonomous refresh of the irradiated region during the rolling motion.The hydrogel robots can reach a rolling speed of 1.27 mm·s^(-1)on a horizonal surface and even climb a ramp of 18°at a speed of 0.57 mm·s^(-1)in an aqueous environment.Furthermore,the hydrogel robots can overcome an obstacle,with rolling direction controllable through irradiation angle of the light and local irradiation on selective regions.This work suggests a facile strategy to develop hydrogel robots and may provide unforeseen inspirations for the design of self-regulated soft robots by using other intelligent materials. 展开更多
关键词 Self-sustained motions Light-driven ROLLING Anisotropic hydrogels Soft robots
原文传递
3D Printed Hydrogels for Soft Robotic Applications
11
作者 Kunlin Wu Jingcheng Xiao +1 位作者 Junwei Li Yifan Wang 《Journal of Polymer Materials》 2025年第2期277-305,共29页
The integration of 3D-printed hydrogels in soft robotics enables the creation of flexible,adaptable,and biocompatible systems.Hydrogels,with their high-water content and responsiveness to stimuli,are suitable for actu... The integration of 3D-printed hydrogels in soft robotics enables the creation of flexible,adaptable,and biocompatible systems.Hydrogels,with their high-water content and responsiveness to stimuli,are suitable for actuators,sensors,and robotic systems that require safe interaction and precise manipulation.Unlike traditional techniques,3D printing offers enhanced capabilities in tailoring structural complexity,resolution,and integrated functionality,enabling the direct fabrication of hydrogel systems with programmed mechanical and functional properties.In this perspective,we explore the evolving role of 3D-printed hydrogels in soft robotics,covering their material composition,fabrication techniques,and diverse applications.We highlight advancements in hydrogel-based actuators,sensors,and robots,emphasizing their ability to perform intricate motions.In addition,we discuss challenges like mechanical robustness,scalability,and integration as well as the potential of hydrogels in soft robotics and explore future directions for their development. 展开更多
关键词 hydrogels 3D printing soft robotics soft actuators soft robots soft sensors
在线阅读 下载PDF
Rate dependent fracture of hydrogels:from small to large-scale swelling
12
作者 Yan Yang Tongqing Lu Tiejun Wang 《Acta Mechanica Sinica》 2025年第7期233-246,共14页
When a cracked hydrogel sample immersed in water is stretched,a swelling zone near the crack tip emerges.Within the swelling zone,water diffusion occurs and swells the hydrogel.Outside the swelling zone,water diffusio... When a cracked hydrogel sample immersed in water is stretched,a swelling zone near the crack tip emerges.Within the swelling zone,water diffusion occurs and swells the hydrogel.Outside the swelling zone,water diffusion is negligible,and the material behaves like an incompressible elastomer.Since water diffusion is a time-dependent process,the size of the swelling zone changes with time.As time evolves,the size of the swelling zone grows until to the size of the hydrogel sample.There exists a competition between the size of the swelling zone and the size of the hydrogel sample,which results in complex rate-dependent fracture behavior of hydrogel.In this article,the competition effect is studied theoretically and numerically.We find that the hydrogel undergoes three stages gradually:small-scale swelling,large-scale swelling,and equilibrium as the size of the swelling zone approaches the size of the hydrogel sample.In the stage of small-scale swelling,the first invariant of stretch at the notch tip I1notch increases with the decrease of the stretch rate.In the stage of large-scale swelling,I1notch increases first and then decreases with the decrease of stretch rate.In the stage of equilibrium,the effect of water diffusion is negligible,and I1notch is independent of stretch rate.This work reveals the connection between the stretch rate,the size of the swelling zone,and the crack tip quantity I1notch,which is used to establish the fracture criterion and predict rate-dependent fracture of hydrogel.Particularly,the previous works on different trends of rate-dependent behavior of hydrogel can be unified in this work,when both small-scale swelling and large-scale swelling are considered. 展开更多
关键词 FRACTURE Swelling zone hydrogels Water diffusion Large deformation
原文传递
MXene Nanosheet-enhanced Ionotronic Hydrogels for Wireless Powering and Noncontact Sensing
13
作者 Yao-Qian Han Zhou-Yue Lei Pei-Yi Wu 《Chinese Journal of Polymer Science》 2025年第4期572-580,共9页
Smart actuators and wearable and implantable devices have attracted much attention in healthcare and environmental sensing.Flexible electronic and ionic materials are the two main approaches used to construct these de... Smart actuators and wearable and implantable devices have attracted much attention in healthcare and environmental sensing.Flexible electronic and ionic materials are the two main approaches used to construct these devices.Among them,hydrogel-based ionic materials offer unique advantages,such as biocompatibility and adaptable mechanical properties.However,ionic hydrogels encounter challenges in achieving wirelessly powered and noncontact sensing.To address this,we introduce MXene nanosheets to construct ionotronic hydrogels.Leveraging the rich surface charges and electronic conductivity of MXene nanosheets,ionotronic hydrogels can harvest vibrational and electromagnetic waves as electrical energy and enable noncontact sensing.Under ultrasound,it can continuously generate voltages up to 85 V and light up lightemitting diodes,promising wireless charging of implanted devices.In addition,it achieves an absorption coefficient of 0.2 for 915 MHz electromagnetic waves,enabling noncontact sensing through radio frequency identification.Notably,the physically crosslinked network of the MXenebased hydrogels maintained structural and performance stability under ultrasonic stimulation and exhibited self-healing properties.Even when cut into two halves,the self-healing hydrogel fully regenerates its original performance.This study provides insight into the development of ionotronic hydrogels for wirelessly powered and noncontact sensing in smart actuators and wearable and implantable applications. 展开更多
关键词 hydrogels lonotronics MXene nanosheets Energy harvesting Noncontact sensing
原文传递
Recent advances in crosslinking strategies for designing self-healing hydrogels in biomedical applications:a review
14
作者 Jingrui Chang Xinyu Wang +3 位作者 Yunhan Huang Wu Gu Xuejiao Ma Bo Lu 《Frontiers of Materials Science》 2025年第3期1-27,共27页
Conventional hydrogels exhibit good performance in various biomedical applications.They consist of a three-dimensional network with porous structures that are constructed from synthetic or natural polymers through phy... Conventional hydrogels exhibit good performance in various biomedical applications.They consist of a three-dimensional network with porous structures that are constructed from synthetic or natural polymers through physical or chemical crosslinking.However,a critical challenge lies in their vulnerability to mechanical damage,as conventional hydrogels often fail to maintain structural integrity under minor trauma.In response to this issue,self-healing hydrogels can autonomously repair themselves after damage,restoring their original functionality without needing external intervention.This remarkable capability significantly extends the lifespan of critical products,including wound dressings,biosensors,drug delivery and tissue engineering scaffolds.This review summarizes the synthesis mechanisms while emphasizing the latest application research advancements.By highlighting the distinct benefits of self-healing hydrogels,we systematically review recent progress in synthesis methods.Our goal is to provide valuable insights that will help researchers in designing and developing more efficient self-healing hydrogels,paving the way for enhanced biomedical solutions. 展开更多
关键词 HYDROGEL SELF-HEALING BIOMEDICINE treatment
原文传递
Anisotropic Hygroscopic Hydrogels with Synergistic Insulation-Radiation-Evaporation for High-Power and Self-Sustained Passive Daytime Cooling
15
作者 Xiuli Dong Kit-Ying Chan +5 位作者 Xuemin Yin Yu Zhang Xiaomeng Zhao Yunfei Yang Zhenyu Wang Xi Shen 《Nano-Micro Letters》 2025年第10期307-327,共21页
Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain su... Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications. 展开更多
关键词 Evaporative cooling Radiative cooling Thermal insulation Hydrogel AEROGEL
在线阅读 下载PDF
Expansion of functional human salivary acinar cell spheroids with reversible thermo-ionically crosslinked 3D hydrogels
16
作者 Jose G.Munguia-Lopez Sangeeth Pillai +5 位作者 Yuli Zhang Amatzia Gantz Dimitria B.Camasao Showan N.Nazhat Joseph M.Kinsella Simon D.Tran 《International Journal of Oral Science》 2025年第3期368-378,共11页
Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this e... Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this end,in vitro platforms are needed to test therapies directed at salivary(fluid-secreting)cells.However,since these are highly differentiated secretory cells,the maintenance of their differentiated state while expanding in numbers is challenging.In this study,the efficiency of three reversible thermo-ionically crosslinked gels:(1)alginate–gelatin(AG),(2)collagen-containing AG(AGC),and(3)hyaluronic acid-containing AG(AGHA),to recapitulate a native-like environment for human salivary gland(SG)cell expansion and 3D spheroid formation was compared.Although all gels were of mechanical properties comparable to human SG tissue(~11 kPa)and promoted the formation of 3D spheroids,AGHA gels produced larger(>100 cells/spheroid),viable(>93%),proliferative,and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins(aquaporin-5,NKCC1,ZO-1,α-amylase)for 14 days in culture.Moreover,the spheroids responded to agonist-induced stimulation by increasingα-amylase secretory granules.Here,we propose alternative lowcost,reproducible,and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact,highly viable 3D-SG spheroids. 展开更多
关键词 secretory cellsthe xerostomia vitro platforms head neck cancers test therapies functional human salivary acinar cell spheroids reversible thermo ionically crosslinked D hydrogels Sjogren's syndrome
暂未订购
Chitosan-citric acid hydrogels loaded with catalpol:A novel therapeutic strategy for spinal cord injury
17
作者 Dapeng Zhao Hengrui Li +6 位作者 Xiaoyu Wang Ailing Yu Lanhua Li Baoliang Sun Ying Wang Guojun Wang Jingyi Sun 《Journal of Neurorestoratology》 2025年第5期57-68,共12页
Background:Spinal cord injury(SCI),which often results from traumatic incidents,leads to neural damage and impaired sensory and motor functions and may pose a serious threat to life.Secondary injury mechanisms caused ... Background:Spinal cord injury(SCI),which often results from traumatic incidents,leads to neural damage and impaired sensory and motor functions and may pose a serious threat to life.Secondary injury mechanisms caused by persistent inflammation disrupt the local microenvironment,causing neuronal cell death and hindering neural regeneration.This study used a chitosan-citric acid(CS-CA)hydrogel as a carrier for Catalpol(CAT-CS-CA),which was directly applied to the injury site to promote SCI repair.Methods:CAT-CS-CA and CS-CA hydrogels were characterized and implanted into rat SCI models.Fifty-four male Sprague-Dawley rats(230-250 g)rats were involved in the experiment.Six rats were randomly divided into two groups(n=3 per group)for in vivo degradation of hydrogels.Forty-eight rats were randomly assigned into four groups(n=12)using a randomization protocol:sham operation group(laminectomy only),SCI group,CS-CA hydrogel group,and CAT-CS-CA hydrogel group.From each group,3 rats were randomly selected for serum and spinal cord tissue extraction,followed by ELISA and RT-qPCR assays to determine the expression levels of various inflammatory factors(IL-1β,IL-6,TNF-α,and IL-10).Another 3 randomly selected rats were used for the evaluation of hindlimb motor function.The remaining 6 rats in each group were used to detect the expression of neuronal nuclei(NeuN),βIII-tubulin(Tuj1),glial fibrillary acidic protein(GFAP),and macrophage polarization(M1/M2 markers).Results:The CAT-CS-CA hydrogel retains CS-CA hydrogel's advantages and gains enhanced neuroprotective and anti-inflammatory abilities.The implantation of CAT-CS-CA into injured rat spinal cords enhanced neuronal survival,stimulated axonal regeneration,and significantly suppressed glial proliferation at the injury site.In addition,it promoted macrophage polarization to the M2 phenotype and substantially enhanced hindlimb motor function in rats with SCI.Conclusion:CAT-CS-CA hydrogel promotes neuronal survival,suppresses glial scarring,and improves motor function,offering a promising strategy for SCI repair. 展开更多
关键词 Spinal cord injury Chitosan hydrogel CATALPOL NEUROPROTECTION INFLAMMATION
暂未订购
Applications and Research Progress of Multifunctional Hydrogels in Periodontal Tissue Regeneration
18
作者 Ying Wen Siyun Zhang Wu Zhang 《Journal of Biosciences and Medicines》 2025年第2期107-121,共15页
Hydrogels, as a novel class of biomaterials, exhibit broad application prospects and are widely used in tissue engineering. In the field of periodontology within dental medicine, hydrogels can be employed for periodon... Hydrogels, as a novel class of biomaterials, exhibit broad application prospects and are widely used in tissue engineering. In the field of periodontology within dental medicine, hydrogels can be employed for periodontal tissue regeneration to repair the damage caused by periodontitis. At present, various hydrogels have been developed to control periodontal inflammation and repair periodontal tissues. This article, based on domestic and international literature, provides a brief review of hydrogels used in periodontal tissue regeneration. 展开更多
关键词 HYDROGEL Periodontal Tissue Regeneration Scaffold Material Bone Defect Repair
在线阅读 下载PDF
Tubular adsorption devices obtained via facile in-situ synthesis of metal‒organic framework particles in hydrogels
19
作者 Zhijian Peng Hui Peng +3 位作者 Yiliang Wang Mingwei Zhang Songsong Wu Liantao Hao 《Frontiers of Materials Science》 2025年第3期151-160,共10页
Metal–organic frameworks(MOFs)and hydrogels have abundant pores,creating much potential for applications in water purification,organic dye adsorption,and so on.In this study,polyvinyl alcohol(PVA)or PVA/chitosan(CS)h... Metal–organic frameworks(MOFs)and hydrogels have abundant pores,creating much potential for applications in water purification,organic dye adsorption,and so on.In this study,polyvinyl alcohol(PVA)or PVA/chitosan(CS)hydrogel tubes containing in-situ synthesized MOF particles were facilely synthesized,which are capable of removing dyes from flowing fluids.The state of polymer chains during synthesis has a significant impact on microstructures and properties of obtained MOF/hydrogel composites.Hierarchical pores and polar groups endow such devices with good adsorption performance.Besides,a tubular MOF/hydrogel device was found to display excellent flexibility and stability,in which brittle ZIF-8 particles were surrounded and protected by the soft hydrogel matrix effectively.This work supplies a facile and novel strategy to prepare soft MOF/hydrogel tubes for adsorption of pollutants as well as for other potential applications. 展开更多
关键词 metal-organic framework HYDROGEL ADSORPTION tubular device
原文传递
Mechanical regulation and 3D bioprinting of native tissue-inspired granular composite hydrogels
20
作者 Heyuan Deng Yongcong Fang +3 位作者 Zhengxun Gao Bingyan Wu Ting Zhang Zhuo Xiong 《Bio-Design and Manufacturing》 2025年第4期570-580,I0026-I0030,共16页
Granular composite(GC)hydrogels have attracted considerable interest in biomedical applications due to their versatile printability and exceptional mechanical properties.However,the lack of comprehensive design guidel... Granular composite(GC)hydrogels have attracted considerable interest in biomedical applications due to their versatile printability and exceptional mechanical properties.However,the lack of comprehensive design guidelines has limited their optimal engineering,as the factors influencing their mechanical performance and printability remain largely unexamined.In this study,we developed GC hydrogels by integrating microgels with interstitial matrices of photocrosslinkable gelatin methacrylate(GelMA).We utilized confocal microscopy and nanoindentation analyses to investigate the spatial distribution and mechanical behavior of these hydrogels.Our findings indicate that the mechanical and rheological properties of GC hydrogels can be precisely tailored by adjusting the volume fraction and size of the microgels.Furthermore,hydrogen bonds were identified as significant contributors to compressive performance,although they had minimal effect on cyclic mechanical behavior.Compared to bulk GelMA hydrogels,GC hydrogels demonstrated enhanced printability and remarkable superelasticity.As a proof of concept,we illustrated their dual printability in embedded printing to create prosthetic liver models for preoperative planning.This study provides valuable insights into the design and optimization of GC hydrogels for advanced biomedical applications. 展开更多
关键词 Granular composite hydrogel 3D bioprinting MICROGEL SUPERELASTICITY Preoperative planning
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部