This study presents a thorough investigation into the use of single and twin-tailed cationic and anionic surfactant-modified chitosan(SMCS)hydrogel beads as effective adsorbents for the elimination of hazardous polycy...This study presents a thorough investigation into the use of single and twin-tailed cationic and anionic surfactant-modified chitosan(SMCS)hydrogel beads as effective adsorbents for the elimination of hazardous polycyclic aromatic hydrocarbons(PAHs)from aqueous solutions.The Chitosan(CS)hydrogel beads were modified with single/twin-tailed anionic surfactants,sodium dodecyl sulfate(SDS)and sodium bis(2-ethylhexyl)sulfosuccinate(AOT),and cationic surfactants,dodecyltrimethylammonium bromide(DTAB)and didodecyldimethylammonium bromide(DDAB),to enhance their adsorption capacity of PAHs.The CS and SMCS beads were evaluated for their structural,mechanical,and adsorption properties using a range of techniques,including infrared spectroscopy(IR),energy-dispersive X-ray spectroscopy(EDX),rheometry,and field emission scanning electron microscopy(FESEM).Adsorption experiments of naphthalene(Nap),acenaphthene(Ace),and phenanthrene(Phe)on SMCS beads demonstrate that they have significantly higher adsorption capacities than CS beads,due to increase in hydrophobic interactions.Adsorption capacity followed the trend,Phen>Ace>Nap for all the beads revealing that twin-tailed SMCS bead possess much higher adsorption capacities(Qmax)compared to single-tailed SMCS beads.For twin tailed surfactants,the maximum adsorption capacities for Nap,Ace and Phe varied as CS-AOT(CS-DDAB):430.0(323.8)611.60(538.18)633.39(536.99)mg/g respectively,outperforming other reported hydrogel beads.The study highlights the simplicity,eco-friendliness,and enhanced performance of surfactant modification for developing high-efficiency adsorbents,paving the way for cost-effective solutions in water re-mediation.展开更多
By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,t...By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.展开更多
Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions...Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.展开更多
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i...Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration.展开更多
Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating ...Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.展开更多
Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological prop...Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.展开更多
The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly f...The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly formed neurons to the damaged area.However,only a small percentage of these neurons survive,and many do not reach the damaged area,possibly because the corpus callosum impedes the migration of subventricular zone-derived stem cells into the lesioned cortex.A second major obstacle to stem cell therapy is the strong inflammatory reaction induced by cerebral ischemia,whereby the associated phagocytic activity of brain macrophages removes both therapeutic cells and/or cell-based drug carriers.To address these issues,neurogenesis was electrically stimulated in the subventricular zone,followed by isolation of proliferating cells,including newly formed neurons,which were subsequently mixed with a nutritional hydrogel.This mixture was then transferred to the stroke cavity of day 14 post-stroke mice.We found that the performance of the treated animals improved in behavioral tests,including novel object,open field,hole board,grooming,and“time-to-feel”adhesive tape tests.Furthermore,immunostaining revealed that the stem cell marker nestin,the neuroepithelial marker Mash1,and the immature neuronal marker doublecortin-positive cells survived in the transplanted area for 2 weeks,possibly due to reduced phagocytic activity and supportive angiogenesis.These results clearly indicate that the transplantation of committed subventricular zone stem cells combined with a protective nutritional gel directly into the infarct cavity after the peak of stroke-induced neuroinflammation represents a feasible approach to improve neurorestoration after cerebral ischemia.展开更多
Owing to their intrinsic safety and low cost,aqueous zinc-ion batteries(AZIBs)have emerged as promising large-scale energy storage devices.Hydrogel electrolytes have been extensively studied because of their superior ...Owing to their intrinsic safety and low cost,aqueous zinc-ion batteries(AZIBs)have emerged as promising large-scale energy storage devices.Hydrogel electrolytes have been extensively studied because of their superior electrochemical performance their ability to endow AZIBs with excellent flexibility.However,traditional hydrogel electrolytes typically suffer from a narrow electrochemical stability potential window(ESPW)and poor cycling stability,primarily due to their high water content.In recent years,lean-water hydrogel electrolytes(L-WHEs)have been developed to address these issues.By confining free water molecules and regulating ion transport within the hydrogel network,L-WHEs can efficiently suppress side reactions,widen the ESPW,and enhance interfacial stability.This review systematically discusses the fundamental principles of L-WHEs,current strategies for developing practical L-WHEs,and recent research progress.Finally,future prospect and challenges in the development of high-performance L-WHEs are outlined.展开更多
Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal t...Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine.展开更多
Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and ena...Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and enable autonomous systems to better perceive their surroundings.Hydrogels,with their biocompatibility,flexibility,and water-rich polymer structure,are increasingly recognized as crucial materials in the development of these systems,especially in applications such as wearable sensors,artificial skin,and neural interfaces.This review explores various hydrogel fabrication techniques,including 3D bioprinting,electro spinning,and photopolymerization,which allow for the precise control of hydrogel properties like mechanical strength,flexibility,and conductivity.By tailoring these properties to mimic natural tissues,hydrogels offer transformative benefits in the creation of advanced,biocompatible,and durable sensory systems.We emphasize the importance of selecting appropriate fabrication methods to meet the specific functional requirements of artificial sensory applications,such as sensitivity to stimuli,durability,and ease of integration.This review further highlights the pivotal role of hydrogels in advancing future artificial sensory technologies and their broad potential in fields ranging from robotics to biomedical devices.展开更多
The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medi...The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medium serves as the primary source of stimulation for the roots,extensive research has focused on the roots'response to static mechanical stimulation.However,the impact of dynamic mechanical stimulation on root phenotype remains underexplored.In this study,we utilized a low acyl gellan gum/polyacrylamide(GG/PAM)double network elastic hydrogel as the growth medium for rapeseed.We constructed a mechanical device to investigate the effects of reciprocating extrusion stimulation on the growth of the rapeseed root system.After three weeks of mechanical stimulation,the root system exhibited a significant increase in lateral roots.This branching enhanced the roots'anchoring and penetration into the hydrogel,thereby improving the root system's adaptability to its environment.Our findings offer valuable data and insights into the effects of reciprocating mechanical stimulation on root growth,providing a new way for engineering root phenotype.展开更多
In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typica...In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure.Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering.Consequently,researchers are developing combinatorial strategies to develop electrically responsive“SMART”systems to improve the therapeutic efficacy of biomolecules.Electrically conductive hydrogels have been explored for various drug delivery applications,enabling higher loading of therapeutic cargo with on-demand delivery.This review emphasizes the properties,mechanisms,fabrication techniques and recent advancements of electrically responsive“SMART”systems aiding on-site drug delivery applications.Additionally,it covers prospects for the successful translation of these systems into clinical research.展开更多
Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and act...Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators.展开更多
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are...Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings.展开更多
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management...Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture.展开更多
Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficu...Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
Aqueous zinc metal batteries have garnered substantial attention ascribing to affordability,intrinsic safety,and environmental benignity Nevertheless,zinc metal batteries yet are challenged with potential service life...Aqueous zinc metal batteries have garnered substantial attention ascribing to affordability,intrinsic safety,and environmental benignity Nevertheless,zinc metal batteries yet are challenged with potential service life issues resulted from dendrites and side reaction.In this paper,a strategy of nanoparticles doped hydrogel is proposed for constructing carboxymethyl cellulose/graphite oxide hybrid hydrogel electrolyte membranes with exceptional ionic conductivity,anti-swelling property,and simultaneously addressing the dendrites and parasitic reaction.The pivotal functions of the carboxymethyl cellulose/graphite oxide hydrogel electrolyte in mitigating hydrogen evolution and fostering accelerated Zn deposition have been elucidated based on principles of thermodynamic and reaction kinetic.The carboxymethyl cellulose/graphite oxide hydrogel electrolyte endows exceptional cycling longevity(800 h at 1 mA cm^(-2)/1 mAh cm^(-2))for Znjj Zn battery,as well as high Coulombic efficiency for Znjj Cu battery(averagely 99.14%within 439 cycles at 1 mA cm^(-2)/1 mAh cm^(-2)).The assembled Znjj NH_(4)V_(4)O_(10)battery delivers a high reversible specific capacity of 328.5 mAh g^(-1)at 0.1 A g^(-1).Moreover,the device of Znjj NH_(4)V_(4)O_(10)pouch battery remains operational under severe conditions like bending and cutting.This work provides valuable reference in developing inorganic nanoparticle hybrid hydrogel electrolyte for realizing high-performance zinc metal batteries.展开更多
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a...Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.展开更多
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio...Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.展开更多
基金the Department of Science and Technology(DST),Govt.of India for providing funds under the FIST program and PURSE grant vide No.SR/PURSE/2020/31 to the department of Chemistry,University of Kashmir.
文摘This study presents a thorough investigation into the use of single and twin-tailed cationic and anionic surfactant-modified chitosan(SMCS)hydrogel beads as effective adsorbents for the elimination of hazardous polycyclic aromatic hydrocarbons(PAHs)from aqueous solutions.The Chitosan(CS)hydrogel beads were modified with single/twin-tailed anionic surfactants,sodium dodecyl sulfate(SDS)and sodium bis(2-ethylhexyl)sulfosuccinate(AOT),and cationic surfactants,dodecyltrimethylammonium bromide(DTAB)and didodecyldimethylammonium bromide(DDAB),to enhance their adsorption capacity of PAHs.The CS and SMCS beads were evaluated for their structural,mechanical,and adsorption properties using a range of techniques,including infrared spectroscopy(IR),energy-dispersive X-ray spectroscopy(EDX),rheometry,and field emission scanning electron microscopy(FESEM).Adsorption experiments of naphthalene(Nap),acenaphthene(Ace),and phenanthrene(Phe)on SMCS beads demonstrate that they have significantly higher adsorption capacities than CS beads,due to increase in hydrophobic interactions.Adsorption capacity followed the trend,Phen>Ace>Nap for all the beads revealing that twin-tailed SMCS bead possess much higher adsorption capacities(Qmax)compared to single-tailed SMCS beads.For twin tailed surfactants,the maximum adsorption capacities for Nap,Ace and Phe varied as CS-AOT(CS-DDAB):430.0(323.8)611.60(538.18)633.39(536.99)mg/g respectively,outperforming other reported hydrogel beads.The study highlights the simplicity,eco-friendliness,and enhanced performance of surfactant modification for developing high-efficiency adsorbents,paving the way for cost-effective solutions in water re-mediation.
基金financially supported by the Science and Technology Innovation Program of Hunan Province(2024RC3003)the Central South University Innovation-Driven Research Programme(2023CXQD012)the Initiative for Sustainable Energy for its financial support。
文摘By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.
基金supported by National Natural Science Foundation of China(22209036,U23A20119)Hebei Provincial Natural Science Foundation,Excellent Youth Project(E2023202069)+1 种基金National Key R&D Program of China(2024YFF0506000,2024YFB4609100)Fundamental Research Foundation from Hebei University of Technology(424132016,282021485).
文摘Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.
文摘Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration.
基金the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470303)the National Key Research and Development Program of China (2022YFB4600101)+5 种基金the National Natural Science Foundation of China (52175201)the Research Program of Science and Technology Department of Gansu Province (24JRRA059, 24JRRA044, and 24YFFA014)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (AMGM2024F12)the Major Program (ZYFZFX-2) of the Lanzhou Institute of Chemical Physics, CASthe Special Research Assistant Project of the Chinese Academy of Sciencesthe Oasis Scholar of Shihezi University
文摘Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.
基金supported by the Shenzhen Hong Kong Joint Funding Project,No.SGDX20230116093645007(to LY)the Shenzhen Science and Technology Innovation Committee International Cooperation Project,No.GJHZ20200731095608025(to LY)+7 种基金Shenzhen Development and Reform Commission’s Intelligent Diagnosis,Treatment and Prevention of Adolescent Spinal Health Public Service Platform,No.S2002Q84500835(to LY)Shenzhen Medical Research Fund,No.B2303005(to LY)Team-based Medical Science Research Program,No.2024YZZ02(to LY)Zhejiang Provincial Natural Science Foundation of China,No.LWQ20H170001(to RL)Basic Research Project of Shenzhen Science and Technology from Shenzhen Science and Technology Innovation Commission,No.JCYJ20210324103010029(to BY)Shenzhen Second People’s Hospital Clinical Research Fund of Guangdong Province High-level Hospital Construction Project,Nos.2023yjlcyj029(to BY),2023yjlcyj021(to LL)Guangdong Basic and Applied Basic Research Foundation,No.2022A1515110679(to LL)China Postdoctoral Science Foundation,No.2022M722203(to GL).
文摘Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.
基金supported by European Union Funding Programme,PNRR,No. 760058(to DMH)the UEFISCDI Project,No. PN-III-P4-IDPCE-2020-059(to APW)
文摘The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly formed neurons to the damaged area.However,only a small percentage of these neurons survive,and many do not reach the damaged area,possibly because the corpus callosum impedes the migration of subventricular zone-derived stem cells into the lesioned cortex.A second major obstacle to stem cell therapy is the strong inflammatory reaction induced by cerebral ischemia,whereby the associated phagocytic activity of brain macrophages removes both therapeutic cells and/or cell-based drug carriers.To address these issues,neurogenesis was electrically stimulated in the subventricular zone,followed by isolation of proliferating cells,including newly formed neurons,which were subsequently mixed with a nutritional hydrogel.This mixture was then transferred to the stroke cavity of day 14 post-stroke mice.We found that the performance of the treated animals improved in behavioral tests,including novel object,open field,hole board,grooming,and“time-to-feel”adhesive tape tests.Furthermore,immunostaining revealed that the stem cell marker nestin,the neuroepithelial marker Mash1,and the immature neuronal marker doublecortin-positive cells survived in the transplanted area for 2 weeks,possibly due to reduced phagocytic activity and supportive angiogenesis.These results clearly indicate that the transplantation of committed subventricular zone stem cells combined with a protective nutritional gel directly into the infarct cavity after the peak of stroke-induced neuroinflammation represents a feasible approach to improve neurorestoration after cerebral ischemia.
基金National Natural Science Youth Foundation of China(Grant No.52302247)National Natural Science Foundation of China(Grant Nos.52072208 and 52261160384)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2024A1515012996)Shenzhen Science and Technology Plan Basic Research(General project,No.JCYJ20230807122005011).
文摘Owing to their intrinsic safety and low cost,aqueous zinc-ion batteries(AZIBs)have emerged as promising large-scale energy storage devices.Hydrogel electrolytes have been extensively studied because of their superior electrochemical performance their ability to endow AZIBs with excellent flexibility.However,traditional hydrogel electrolytes typically suffer from a narrow electrochemical stability potential window(ESPW)and poor cycling stability,primarily due to their high water content.In recent years,lean-water hydrogel electrolytes(L-WHEs)have been developed to address these issues.By confining free water molecules and regulating ion transport within the hydrogel network,L-WHEs can efficiently suppress side reactions,widen the ESPW,and enhance interfacial stability.This review systematically discusses the fundamental principles of L-WHEs,current strategies for developing practical L-WHEs,and recent research progress.Finally,future prospect and challenges in the development of high-performance L-WHEs are outlined.
基金supported by the National Natural Science Foundation of China(32171354,82222015,82171001)The National Key Research and Development Program of China2023YFC2413600Research Funding from West China School/Hospital of Stomatology,Sichuan University(No.RCDWIS2023-1).
文摘Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine.
基金supported by the National Research Foundation of Korea(NRF)Grants funded by the Korea government(MSIT)(Nos.RS-2023-00213047 and RS-2024-00405818)。
文摘Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and enable autonomous systems to better perceive their surroundings.Hydrogels,with their biocompatibility,flexibility,and water-rich polymer structure,are increasingly recognized as crucial materials in the development of these systems,especially in applications such as wearable sensors,artificial skin,and neural interfaces.This review explores various hydrogel fabrication techniques,including 3D bioprinting,electro spinning,and photopolymerization,which allow for the precise control of hydrogel properties like mechanical strength,flexibility,and conductivity.By tailoring these properties to mimic natural tissues,hydrogels offer transformative benefits in the creation of advanced,biocompatible,and durable sensory systems.We emphasize the importance of selecting appropriate fabrication methods to meet the specific functional requirements of artificial sensory applications,such as sensitivity to stimuli,durability,and ease of integration.This review further highlights the pivotal role of hydrogels in advancing future artificial sensory technologies and their broad potential in fields ranging from robotics to biomedical devices.
基金supporting from Shanghai Pujiang Program(23PJ1400400)DHU startup grant,the Fundamental Research Funds for the Central Universities,DHU Distinguished Young Professor Program.
文摘The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medium serves as the primary source of stimulation for the roots,extensive research has focused on the roots'response to static mechanical stimulation.However,the impact of dynamic mechanical stimulation on root phenotype remains underexplored.In this study,we utilized a low acyl gellan gum/polyacrylamide(GG/PAM)double network elastic hydrogel as the growth medium for rapeseed.We constructed a mechanical device to investigate the effects of reciprocating extrusion stimulation on the growth of the rapeseed root system.After three weeks of mechanical stimulation,the root system exhibited a significant increase in lateral roots.This branching enhanced the roots'anchoring and penetration into the hydrogel,thereby improving the root system's adaptability to its environment.Our findings offer valuable data and insights into the effects of reciprocating mechanical stimulation on root growth,providing a new way for engineering root phenotype.
基金the Ministry of Human Resource and Development (MHRD) Government of India for funding
文摘In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure.Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering.Consequently,researchers are developing combinatorial strategies to develop electrically responsive“SMART”systems to improve the therapeutic efficacy of biomolecules.Electrically conductive hydrogels have been explored for various drug delivery applications,enabling higher loading of therapeutic cargo with on-demand delivery.This review emphasizes the properties,mechanisms,fabrication techniques and recent advancements of electrically responsive“SMART”systems aiding on-site drug delivery applications.Additionally,it covers prospects for the successful translation of these systems into clinical research.
基金financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC),le Fonds de recherche du Québec:Nature et technologies(FRQNT),and The Centre québécois sur les matériaux fonctionnels.
文摘Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators.
基金financially supported by the National Natural Science Foundation of China(No.52203209)the State Key Laboratory of Solid Waste Reuse for Building Materials,China(No.SWR-2022-009)the Fundamental Research Funds for the Central Universities,China(No.FRF-IDRY22-012)。
文摘Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings.
基金supported by the Research Platform for biomedical and Health Technology, NUS (Suzhou) Research Institute (RP-BHT-Prof. LEE Chengkuo)RIE Advanced Manufacturing and Engineering (AME) Programmatic Grant (Grant A18A4b0055)+1 种基金RIE 2025-Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) (Grant I2301E0027)Reimagine Research Scheme projects, National University of Singapore, A-0009037-03-00 and A-0009454-01-00 and Reimagine Research Scheme projects, National University of Singapore, A-0004772-00-00 and A-0004772-01-00。
文摘Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture.
基金supports received from Scientific Research Fund of Liaoning Province Education Department(Grant No.JYTQN 2023025)Scientific Research Fund of Liaoning Province Education Department(Grant No.JYTQN 2023025)+3 种基金the Natural Science Foundation of Liaoning Province(Grant No.2024-MS-075)the National Natural Science Foundation of China(32201179)National Key R&D Program of China(2023YFC2508200)Liaoning Provincial Natural Science Foundation Joint Fund(General Support Program Project)(2023-MSBA-093).
文摘Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
基金supported by the National Natural Science Foundation of China(51763014 and 52073133)Key Talent Project Foundation of Gansu Province+1 种基金Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(18LHPY002)the Program for Hong Liu Distinguished Young Scholars in Lanzhou University of Technology。
文摘Aqueous zinc metal batteries have garnered substantial attention ascribing to affordability,intrinsic safety,and environmental benignity Nevertheless,zinc metal batteries yet are challenged with potential service life issues resulted from dendrites and side reaction.In this paper,a strategy of nanoparticles doped hydrogel is proposed for constructing carboxymethyl cellulose/graphite oxide hybrid hydrogel electrolyte membranes with exceptional ionic conductivity,anti-swelling property,and simultaneously addressing the dendrites and parasitic reaction.The pivotal functions of the carboxymethyl cellulose/graphite oxide hydrogel electrolyte in mitigating hydrogen evolution and fostering accelerated Zn deposition have been elucidated based on principles of thermodynamic and reaction kinetic.The carboxymethyl cellulose/graphite oxide hydrogel electrolyte endows exceptional cycling longevity(800 h at 1 mA cm^(-2)/1 mAh cm^(-2))for Znjj Zn battery,as well as high Coulombic efficiency for Znjj Cu battery(averagely 99.14%within 439 cycles at 1 mA cm^(-2)/1 mAh cm^(-2)).The assembled Znjj NH_(4)V_(4)O_(10)battery delivers a high reversible specific capacity of 328.5 mAh g^(-1)at 0.1 A g^(-1).Moreover,the device of Znjj NH_(4)V_(4)O_(10)pouch battery remains operational under severe conditions like bending and cutting.This work provides valuable reference in developing inorganic nanoparticle hybrid hydrogel electrolyte for realizing high-performance zinc metal batteries.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201302 and 2021YFA1201300)the National Natural Science Foundation of China(Nos.52303033,52173029)+1 种基金Shanghai Sailing Program(No.23YF1400400)the Natural Science Foundation of Shanghai(No.21ZR1400500).
文摘Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.
基金financially supported by the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(E411060316)the NSFC-CONICFT Joint Project(51961125207)+1 种基金the Special Fund(2024)of Basic Scientific Research Project at Undergraduate University in Liaoning Province(LJ212410152056)the Foundation(GZKF202301)of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences。
文摘Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.