期刊文献+
共找到8,801篇文章
< 1 2 250 >
每页显示 20 50 100
Adsorption capacity of single and twin-tailed cationic and anionic surfactant-modified chitosan hydrogel beads for PAH removal from aqueous solutions
1
作者 Hina Kouser Qadri Showkat Rashid +3 位作者 Arjumund Shaheen Firdaus Ahmad Ahanger Sohail Amin Malik Aijaz Ahmad Dar 《Journal of Environmental Sciences》 2026年第1期512-522,共11页
This study presents a thorough investigation into the use of single and twin-tailed cationic and anionic surfactant-modified chitosan(SMCS)hydrogel beads as effective adsorbents for the elimination of hazardous polycy... This study presents a thorough investigation into the use of single and twin-tailed cationic and anionic surfactant-modified chitosan(SMCS)hydrogel beads as effective adsorbents for the elimination of hazardous polycyclic aromatic hydrocarbons(PAHs)from aqueous solutions.The Chitosan(CS)hydrogel beads were modified with single/twin-tailed anionic surfactants,sodium dodecyl sulfate(SDS)and sodium bis(2-ethylhexyl)sulfosuccinate(AOT),and cationic surfactants,dodecyltrimethylammonium bromide(DTAB)and didodecyldimethylammonium bromide(DDAB),to enhance their adsorption capacity of PAHs.The CS and SMCS beads were evaluated for their structural,mechanical,and adsorption properties using a range of techniques,including infrared spectroscopy(IR),energy-dispersive X-ray spectroscopy(EDX),rheometry,and field emission scanning electron microscopy(FESEM).Adsorption experiments of naphthalene(Nap),acenaphthene(Ace),and phenanthrene(Phe)on SMCS beads demonstrate that they have significantly higher adsorption capacities than CS beads,due to increase in hydrophobic interactions.Adsorption capacity followed the trend,Phen>Ace>Nap for all the beads revealing that twin-tailed SMCS bead possess much higher adsorption capacities(Qmax)compared to single-tailed SMCS beads.For twin tailed surfactants,the maximum adsorption capacities for Nap,Ace and Phe varied as CS-AOT(CS-DDAB):430.0(323.8)611.60(538.18)633.39(536.99)mg/g respectively,outperforming other reported hydrogel beads.The study highlights the simplicity,eco-friendliness,and enhanced performance of surfactant modification for developing high-efficiency adsorbents,paving the way for cost-effective solutions in water re-mediation. 展开更多
关键词 hydrogel CHITOSAN SURFACTANT Polycyclic aromatic hydrocarbons(PAHs) Adsorption
原文传递
Radiative Coupled Evaporation Cooling Hydrogel for Above-Ambient Heat Dissipation and Flame Retardancy
2
作者 Qin Ye Yimou Huang +4 位作者 Baojian Yao Zhuo Chen Changming Shi Brian WSheldon Meijie Chen 《Nano-Micro Letters》 2026年第2期368-382,共15页
By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,t... By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy. 展开更多
关键词 Radiative cooling Evaporation cooling Heat dissipation Photonic hydrogel Flame retardancy
在线阅读 下载PDF
Superhydrated Zwitterionic Hydrogel with Dedicated Water Channels Enables Nonfouling Solar Desalination
3
作者 Panpan Zhang Hanxue Liang +8 位作者 Yawei Du Haiyang Wang Yaqi Tian Jingtao Bi Lei Wang Zhiyuan Guo Jing Wang Zhi‑Yong Ji Liangti Qu 《Nano-Micro Letters》 2026年第3期354-367,共14页
Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions... Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments. 展开更多
关键词 Zwitterionic hydrogel Strong hydration Nonfouling ability Sustainable solar desalination Complex marine environments
在线阅读 下载PDF
Advances in polymer-based hydrogel systems for adipose-derived mesenchymal stem cells toward bone regeneration
4
作者 Nivetha Suresh Sundaravadhanan Lekhavadhani Nagarajan Selvamurugan 《World Journal of Orthopedics》 2026年第1期13-28,共16页
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i... Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived mesenchymal stem cells Bone tissue engineering hydrogelS Bone regeneration POLYMERS
在线阅读 下载PDF
Octopus-Inspired Self-Adaptive Hydrogel Gripper Capable of Manipulating Ultra-Soft Objects
5
作者 Yixian Wang Desheng Liu +9 位作者 Danli Hu Chao Wang Zonggang Li Jiayu Wu Pan Jiang Xingxing Yang Changcheng Bai Zhongying Ji Xin Jia Xiaolong Wang 《Nano-Micro Letters》 2026年第1期896-913,共18页
Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating ... Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics. 展开更多
关键词 Octopus sucker structure Self-adaptive gripper Supramolecular hydrogel Underwater switchable attachment Nondestructive manipulating
在线阅读 下载PDF
Porcine decellularized nerve matrix hydrogel attenuates neuroinflammation after peripheral nerve injury by inhibiting the TLR4/MyD88/NF-κB axis
6
作者 Rui Li Jianquan Liu +7 位作者 Liuxun Li Guotian Luo Xinrong Yuan Shichao Shen Yongpeng Shi Jianlong Wu Bin Yan Lei Yang 《Neural Regeneration Research》 2026年第3期1222-1235,共14页
Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological prop... Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury. 展开更多
关键词 anti-inflammatory reaction macrophage polarization NEUROINFLAMMATION peripheral nerve injury porcine decellularized nerve matrix hydrogel
暂未订购
Grafts of hydrogel-embedded electrically stimulated subventricular stem cells into the stroke cavity improves functional recovery of mice
7
作者 Andreea-Mihaela Cercel Ianis KS Boboc +5 位作者 Roxana Surugiu Thorsten R.Doeppner Dirk M.Hermann Bogdan Catalin Andrei Gresita Aurel Popa-Wagner 《Neural Regeneration Research》 2026年第2期695-703,共9页
The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly f... The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly formed neurons to the damaged area.However,only a small percentage of these neurons survive,and many do not reach the damaged area,possibly because the corpus callosum impedes the migration of subventricular zone-derived stem cells into the lesioned cortex.A second major obstacle to stem cell therapy is the strong inflammatory reaction induced by cerebral ischemia,whereby the associated phagocytic activity of brain macrophages removes both therapeutic cells and/or cell-based drug carriers.To address these issues,neurogenesis was electrically stimulated in the subventricular zone,followed by isolation of proliferating cells,including newly formed neurons,which were subsequently mixed with a nutritional hydrogel.This mixture was then transferred to the stroke cavity of day 14 post-stroke mice.We found that the performance of the treated animals improved in behavioral tests,including novel object,open field,hole board,grooming,and“time-to-feel”adhesive tape tests.Furthermore,immunostaining revealed that the stem cell marker nestin,the neuroepithelial marker Mash1,and the immature neuronal marker doublecortin-positive cells survived in the transplanted area for 2 weeks,possibly due to reduced phagocytic activity and supportive angiogenesis.These results clearly indicate that the transplantation of committed subventricular zone stem cells combined with a protective nutritional gel directly into the infarct cavity after the peak of stroke-induced neuroinflammation represents a feasible approach to improve neurorestoration after cerebral ischemia. 展开更多
关键词 ANXA3 behavioral recovery DOUBLECORTIN electrical stimulation Mash1 NESTIN STROKE subventricular neural stem cells supportive hydrogel vascular cell adhesion molecule 1
暂未订购
Insights on lean-water hydrogel electrolyte designs for nextgeneration zinc batteries
8
作者 Hongbo Wei Baohua Li Qi Liu 《Energy Materials and Devices》 2025年第4期19-35,共17页
Owing to their intrinsic safety and low cost,aqueous zinc-ion batteries(AZIBs)have emerged as promising large-scale energy storage devices.Hydrogel electrolytes have been extensively studied because of their superior ... Owing to their intrinsic safety and low cost,aqueous zinc-ion batteries(AZIBs)have emerged as promising large-scale energy storage devices.Hydrogel electrolytes have been extensively studied because of their superior electrochemical performance their ability to endow AZIBs with excellent flexibility.However,traditional hydrogel electrolytes typically suffer from a narrow electrochemical stability potential window(ESPW)and poor cycling stability,primarily due to their high water content.In recent years,lean-water hydrogel electrolytes(L-WHEs)have been developed to address these issues.By confining free water molecules and regulating ion transport within the hydrogel network,L-WHEs can efficiently suppress side reactions,widen the ESPW,and enhance interfacial stability.This review systematically discusses the fundamental principles of L-WHEs,current strategies for developing practical L-WHEs,and recent research progress.Finally,future prospect and challenges in the development of high-performance L-WHEs are outlined. 展开更多
关键词 lean-water hydrogel zinc-ion batteries hydrogel electrolyte hydrogel battery
在线阅读 下载PDF
Photothermal sensitive nanocomposite hydrogel for infectious bone defects 被引量:1
9
作者 Yanting Wu Xi Xie +7 位作者 Guowen Luo Jing Xie Xiuwen Ye Wanrong Gu Anchun Mo Zhiyong Qian Chenchen Zhou Jinfeng Liao 《Bone Research》 2025年第2期320-338,共19页
Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal t... Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine. 展开更多
关键词 incorporation mild photothermal nano bone defects treatment modality bone defect advanced therapeutic strategiesthis photothermal therapy hydrogel matrix mild photothermal therapy hydrogel
暂未订购
Hydrogel fabrication techniques for advanced artificial sensory systems
10
作者 Wonhee Gong Jeongyeon Kim +4 位作者 Chaeyoon Kim Hyewon Chang Yejin Ahn David V Schaffer Jieung Baek 《International Journal of Extreme Manufacturing》 2025年第6期28-61,共34页
Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and ena... Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and enable autonomous systems to better perceive their surroundings.Hydrogels,with their biocompatibility,flexibility,and water-rich polymer structure,are increasingly recognized as crucial materials in the development of these systems,especially in applications such as wearable sensors,artificial skin,and neural interfaces.This review explores various hydrogel fabrication techniques,including 3D bioprinting,electro spinning,and photopolymerization,which allow for the precise control of hydrogel properties like mechanical strength,flexibility,and conductivity.By tailoring these properties to mimic natural tissues,hydrogels offer transformative benefits in the creation of advanced,biocompatible,and durable sensory systems.We emphasize the importance of selecting appropriate fabrication methods to meet the specific functional requirements of artificial sensory applications,such as sensitivity to stimuli,durability,and ease of integration.This review further highlights the pivotal role of hydrogels in advancing future artificial sensory technologies and their broad potential in fields ranging from robotics to biomedical devices. 展开更多
关键词 hydrogel artificial sensory systems PHOTO-CROSSLINKING 3D bioprinting ELECTROSPINNING smart hydrogels
在线阅读 下载PDF
Engineering living root with mechanical stimulation derived from reciprocating compression in a double network hydrogel as elastic soil
11
作者 Qiye Wu Jinchun Xie +1 位作者 Junfu Li Yongjun Men 《Advanced Agrochem》 2025年第2期123-131,共9页
The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medi... The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medium serves as the primary source of stimulation for the roots,extensive research has focused on the roots'response to static mechanical stimulation.However,the impact of dynamic mechanical stimulation on root phenotype remains underexplored.In this study,we utilized a low acyl gellan gum/polyacrylamide(GG/PAM)double network elastic hydrogel as the growth medium for rapeseed.We constructed a mechanical device to investigate the effects of reciprocating extrusion stimulation on the growth of the rapeseed root system.After three weeks of mechanical stimulation,the root system exhibited a significant increase in lateral roots.This branching enhanced the roots'anchoring and penetration into the hydrogel,thereby improving the root system's adaptability to its environment.Our findings offer valuable data and insights into the effects of reciprocating mechanical stimulation on root growth,providing a new way for engineering root phenotype. 展开更多
关键词 Mechanical stimulation hydrogel medium Double network hydrogel Root phenotype Rapeseed growth Elastic soil
在线阅读 下载PDF
Electrically conductive“SMART”hydrogels for on-demand drug delivery
12
作者 Soumajyoti Ghosh Nikhil Kumar Santanu Chattopadhyay 《Asian Journal of Pharmaceutical Sciences》 2025年第1期26-47,共22页
In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typica... In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure.Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering.Consequently,researchers are developing combinatorial strategies to develop electrically responsive“SMART”systems to improve the therapeutic efficacy of biomolecules.Electrically conductive hydrogels have been explored for various drug delivery applications,enabling higher loading of therapeutic cargo with on-demand delivery.This review emphasizes the properties,mechanisms,fabrication techniques and recent advancements of electrically responsive“SMART”systems aiding on-site drug delivery applications.Additionally,it covers prospects for the successful translation of these systems into clinical research. 展开更多
关键词 hydrogelS Conductive polymers Electrically conductive hydrogels On-demand drug delivery
暂未订购
Liquid Crystalline Hydrogel Capable of Thermally-induced Dual Actuation
13
作者 Yi-Ming Chen Yue Zhao 《Chinese Journal of Polymer Science》 2025年第4期563-571,共9页
Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and act... Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators. 展开更多
关键词 Liquid crystalline hydrogel Dual actuation Thermoresponsive hydrogel Liquid crystal elastomer
原文传递
Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel 被引量:1
14
作者 Lou Zhang Shuo Li +4 位作者 Fu Tang Jingkai Zhang Yuetong Kang Hean Zhang Lidong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期504-514,共11页
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are... Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings. 展开更多
关键词 silver nanoparticles hydrogel STRAW extraction ANTIBACTERIAL
在线阅读 下载PDF
A Multifunctional Hydrogel with Multimodal Self-Powered Sensing Capability and Stable Direct Current Output for Outdoor Plant Monitoring Systems 被引量:2
15
作者 Xinge Guo Luwei Wang +1 位作者 Zhenyang Jin Chengkuo Lee 《Nano-Micro Letters》 2025年第4期1-24,共24页
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management... Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture. 展开更多
关键词 Self-powered sensor hydrogel Energy harvester Outdoor farming Self-sustainable IoT
在线阅读 下载PDF
Artificial Intelligence-Assisted Conductive Hydrogel Dressings for Refractory Wounds Monitoring 被引量:2
16
作者 Yumo She He Liu +10 位作者 Hailiang Yuan Yiqi Li Xunjie Liu Ruonan Liu Mengyao Wang Tingting Wang Lina Wang Meihan Liu Wenyu Wan Ye Tian Kai Zhang 《Nano-Micro Letters》 2025年第12期492-525,共34页
Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficu... Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings. 展开更多
关键词 Artificial intelligence Conductive hydrogels Refractory wounds Wound healing Wound monitoring
暂未订购
Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation 被引量:1
17
作者 Meng-Chen Huang Chao-Hua Xue +8 位作者 Zhongxue Bai Jun Cheng Yong-Gang Wu Chao-Qun Ma Li Wan Long Xie Hui-Di Wang Bing-Ying Liu Xiao-Jing Guo 《Journal of Energy Chemistry》 2025年第2期175-190,I0005,共17页
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management... All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons. 展开更多
关键词 Thermochromic hydrogel Self-adaptive thermal management Radiative cooling Spectral modulation ENERGY-SAVING
在线阅读 下载PDF
Designing carboxymethyl cellulose based hydrogel electrolyte membranes enhanced by inorganic nanoparticle toward stable zinc anode 被引量:1
18
作者 Xiangye Li Yuan Li +2 位作者 Yu Jiang Dahui Wang Fen Ran 《Green Energy & Environment》 2025年第3期537-550,共14页
Aqueous zinc metal batteries have garnered substantial attention ascribing to affordability,intrinsic safety,and environmental benignity Nevertheless,zinc metal batteries yet are challenged with potential service life... Aqueous zinc metal batteries have garnered substantial attention ascribing to affordability,intrinsic safety,and environmental benignity Nevertheless,zinc metal batteries yet are challenged with potential service life issues resulted from dendrites and side reaction.In this paper,a strategy of nanoparticles doped hydrogel is proposed for constructing carboxymethyl cellulose/graphite oxide hybrid hydrogel electrolyte membranes with exceptional ionic conductivity,anti-swelling property,and simultaneously addressing the dendrites and parasitic reaction.The pivotal functions of the carboxymethyl cellulose/graphite oxide hydrogel electrolyte in mitigating hydrogen evolution and fostering accelerated Zn deposition have been elucidated based on principles of thermodynamic and reaction kinetic.The carboxymethyl cellulose/graphite oxide hydrogel electrolyte endows exceptional cycling longevity(800 h at 1 mA cm^(-2)/1 mAh cm^(-2))for Znjj Zn battery,as well as high Coulombic efficiency for Znjj Cu battery(averagely 99.14%within 439 cycles at 1 mA cm^(-2)/1 mAh cm^(-2)).The assembled Znjj NH_(4)V_(4)O_(10)battery delivers a high reversible specific capacity of 328.5 mAh g^(-1)at 0.1 A g^(-1).Moreover,the device of Znjj NH_(4)V_(4)O_(10)pouch battery remains operational under severe conditions like bending and cutting.This work provides valuable reference in developing inorganic nanoparticle hybrid hydrogel electrolyte for realizing high-performance zinc metal batteries. 展开更多
关键词 Carboxymethyl cellulose Graphite oxide hydrogel electrolyte Anti-swelling
在线阅读 下载PDF
Modulus self-adaptive hydrogel optical fiber for long-term modulation of neural activity 被引量:1
19
作者 Guoyin Chen Siming Xu +6 位作者 Zeqi Zhang Ying Guo Jiahao Zheng Jialei Yang Jie Pan Kai Hou Meifang Zhu 《Chinese Chemical Letters》 2025年第7期425-429,共5页
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a... Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy. 展开更多
关键词 hydrogel optical fibers OPTOGENETICS Neural interfaces Variable modulus BIOCOMPATIBILITY
原文传递
“Tennis racket”hydrogel electrolytes to synchronously regulate cathode and anode of zinc-iodine batteries 被引量:1
20
作者 Tian-Yi Yang Ting-Ting Su +3 位作者 Hai-Long Wang Kun Li Wen-Feng Ren Run-Cang Sun 《Journal of Energy Chemistry》 2025年第3期454-462,共9页
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio... Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries. 展开更多
关键词 Tennis racket hydrogele lectrolyte Interface regulation Zinc anode Zinc-iodide batteries
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部