Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic ...Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts.展开更多
Three 4 alkylcyclohexanyl acetic acids were synthesized by hydrogenation of corresponding phenyl derivatives in dioxane in yields over 93% under mild conditions. IR, H NMR and MS were used in characterization of the s...Three 4 alkylcyclohexanyl acetic acids were synthesized by hydrogenation of corresponding phenyl derivatives in dioxane in yields over 93% under mild conditions. IR, H NMR and MS were used in characterization of the structure of the compounds.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22322104,22171074)the Natural Science Foundation of Heilongjiang Province(No.YQ2021B009)+3 种基金the Reform and Development Fund Project of Local University supported by the Central Government(Outstanding Youth Program)Heilongjiang Province Young Scientific and Technological Talent Lifting Project(No.2023QNTJ019)the Basic Research Support Project for Outstanding Young Teachers in Heilongjiang Provincial University(No.YQJH2023129)the Outstanding Youth Science Foundation of Heilongjiang University(No.JCL202301)。
文摘Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts.
文摘Three 4 alkylcyclohexanyl acetic acids were synthesized by hydrogenation of corresponding phenyl derivatives in dioxane in yields over 93% under mild conditions. IR, H NMR and MS were used in characterization of the structure of the compounds.