The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject...The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybr...Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.展开更多
Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameter...Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.展开更多
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ...A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.展开更多
This paper dealt with composite scheduling problems which combine manufacturing scheduling problems and/or transportation routing problems.Two scheduling models were formulated as the elements of the composite schedul...This paper dealt with composite scheduling problems which combine manufacturing scheduling problems and/or transportation routing problems.Two scheduling models were formulated as the elements of the composite scheduling model,and the composite model was formulated composing these models with indispensable additional constraints.A hybrid genetic algorithm was developed to solve the composite scheduling problems.An improved representation based on random keys was developed to search permutation space.A genetic algorithm based dynamic programming approach was applied to select resource.The proposed technique and a previous technique are compared by three types of problems.All results indicate that the proposed technique is superior to the previous one.展开更多
Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The...Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The electricity consumption of EVs is expressed by the battery state-of-charge(SoC).To make it more realistic,we take into account the terrain grades of roads,which affect the travel process of EVs.Within our work,the battery SoC dynamics of EVs are used to describe this situation.We aim to minimize the total electricity consumption while serving a set of customers.To tackle this problem,we formulate the problem as a mixed integer programming model.Furthermore,we develop a hybrid genetic algorithm(GA)that combines the 2-opt algorithm with GA.In simulation results,by the comparison of the simulated annealing(SA)algorithm and GA,the proposed approach indicates that it can provide better solutions in a short time.展开更多
For massive order allocation problem of the third party logistics (TPL) in ecommerce, this paper proposes a general order allocation model based on cloud architecture and hybrid genetic algorithm (GA), implementin...For massive order allocation problem of the third party logistics (TPL) in ecommerce, this paper proposes a general order allocation model based on cloud architecture and hybrid genetic algorithm (GA), implementing cloud deployable MapReduce (MR) code to parallelize allocation process, using heuristic rule to fix illegal chromosome during encoding process and adopting mixed integer programming (MIP) as fitness flmction to guarantee rationality of chromosome fitness. The simulation experiment shows that in mass processing of orders, the model performance in a multi-server cluster environment is remarkable superior to that in stand-alone environment. This model can be directly applied to cloud based logistics information platform (LIP) in near future, implementing fast auto-allocation for massive concurrent orders, with great application value.展开更多
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r....Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.展开更多
Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is pr...Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is proposed to identify the stiffness and damping coefficients of a rotor AMB system.This method combines the global optimization capability of the genetic algorithm(GA)and the local search ability of Nelder-Mead simplex method.The supporting parameters are obtained using the hybrid GA based on the experimental unbalance response calculated through the transfer matrix method.To verify the identified results,the experimental stiffness and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the finite element method.The close agreement between the simulation and experimental data indicates that the proposed identified algorithm can effectively identify the AMBs supporting parameters.展开更多
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorith...A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.展开更多
Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as r...Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach.展开更多
This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are ...This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.展开更多
This paper proposes a multi-period portfolio investment model with class constraints, transaction cost, and indivisible securities. When an investor joins the securities market for the first time, he should decide on ...This paper proposes a multi-period portfolio investment model with class constraints, transaction cost, and indivisible securities. When an investor joins the securities market for the first time, he should decide on portfolio investment based on the practical conditions of securities market. In addition, investors should adjust the portfolio according to market changes, changing or not changing the category of risky securities. Markowitz meanvariance approach is applied to the multi-period portfolio selection problems. Because the sub-models are optimal mixed integer program, whose objective function is not unimodal and feasible set is with a particular structure, traditional optimization method usually fails to find a globally optimal solution. So this paper employs the hybrid genetic algorithm to solve the problem. Investment policies that accord with finance market and are easy to operate for investors are put forward with an illustration of application.展开更多
According to the cutting stock problem of 2-dimensional shapes, a nesting system (NS) based on hybrid genetic algorithm (HGA) is established. The system optimizes the sequence and angles of polygons with hybrid Ge...According to the cutting stock problem of 2-dimensional shapes, a nesting system (NS) based on hybrid genetic algorithm (HGA) is established. The system optimizes the sequence and angles of polygons with hybrid Genetic Algorithm to accomplish the superior solution. It nests the irregular shape directly without covering irregular shapes with a rectangle. It also improves the decoding strategy of 2-dimensional shapes nesting based on the classical bottom-left strategy, makes the new strategy be universal to convex polygons, concave polygons and line-circular composted polygons.展开更多
A novel algorithm is presented for supervised inductive learning by integrating a genetic algorithm with hot'tom-up induction process.The hybrid learning algorithm has been implemented in C on a personal computer(...A novel algorithm is presented for supervised inductive learning by integrating a genetic algorithm with hot'tom-up induction process.The hybrid learning algorithm has been implemented in C on a personal computer(386DX/40).The performance of the algorithm has been evaluated by applying it to 11-multiplexer problem and the results show that the algorithm's accuracy is higher than the others[5,12, 13].展开更多
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com...In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.展开更多
in this article a novel learning method is proposed,which is a combination of GA and the bottomup induction process. The method has been implemented in a system called KAA,and we evaluate it on a multiplexer problem,...in this article a novel learning method is proposed,which is a combination of GA and the bottomup induction process. The method has been implemented in a system called KAA,and we evaluate it on a multiplexer problem,which shows the higher predict accuracy even in a noisy environment.展开更多
In the large-scale logistics distribution of single logistic center,the method based on traditional genetic algorithm is slow in evolution and easy to fall into the local optimal solution.Addressing at this issue,we p...In the large-scale logistics distribution of single logistic center,the method based on traditional genetic algorithm is slow in evolution and easy to fall into the local optimal solution.Addressing at this issue,we propose a novel approach of exploring hybrid genetic algorithm based large-scale logistic distribution for BBG supermarket.We integrate greedy algorithm and hillclimbing algorithm into genetic algorithm.Greedy algorithm is applied to initialize the population,and then hill-climbing algorithm is used to optimize individuals in each generation after selection,crossover and mutation.Our approach is evaluated on the dataset of BBG Supermarket which is one of the top 10 supermarkets in China.Experimental results show that our method outperforms some other methods in the field.展开更多
The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded b...The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded by the environmental regulations, consumer awareness and the prevailing social consciousness. In this context, this research work addresses a closed loop supply chain network problem of fashion leather goods industry, with an objective of minimizing the total cost of the entire supply chain and also reducing the total waste from the end of life product returns. The research work commenced with a literature review on the reverse and closed loop supply chain network design problems of fashion and leather goods industry dealt in the past. Then, the identified CLSCND problem is solved using a mathematical model based on Mixed Integer Non-Linear Programme (MINLP) and then a suitable Hybrid Genetic Algorithm (HGA) developed for the CLSCND is implemented for obtaining optimum solution. Both the MINLP model and HGA are customized as per the CLSCND problem chosen and implemented for the industrial case of an Indian Fashion Leather Goods Industry. Finally, the solutions obtained for MINLP model in LINGO 15 and for HGA in VB.NET platform are compared and presented. The optimum solution obtained from the suitable HGA is illustrated as an optimum shipment pattern for the closed loop supply chain network design problem of the fashion leather goods industry case.展开更多
基金the National Natural Science Foundation of China,grant numbers 51704253 and 52474084.
文摘The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
基金The project supported by the National Natural Science Foundation of China (10472025)
文摘Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.
文摘Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.
基金Supported by the Natural Science Foundation of Jiangsu Province (No.BK2004016).
文摘A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.
基金Project supported by the Grant-in-Aid for Young Scientists (B) from the Ministry of Education,Culture,Sports,Science and Technology,Japan
文摘This paper dealt with composite scheduling problems which combine manufacturing scheduling problems and/or transportation routing problems.Two scheduling models were formulated as the elements of the composite scheduling model,and the composite model was formulated composing these models with indispensable additional constraints.A hybrid genetic algorithm was developed to solve the composite scheduling problems.An improved representation based on random keys was developed to search permutation space.A genetic algorithm based dynamic programming approach was applied to select resource.The proposed technique and a previous technique are compared by three types of problems.All results indicate that the proposed technique is superior to the previous one.
文摘Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The electricity consumption of EVs is expressed by the battery state-of-charge(SoC).To make it more realistic,we take into account the terrain grades of roads,which affect the travel process of EVs.Within our work,the battery SoC dynamics of EVs are used to describe this situation.We aim to minimize the total electricity consumption while serving a set of customers.To tackle this problem,we formulate the problem as a mixed integer programming model.Furthermore,we develop a hybrid genetic algorithm(GA)that combines the 2-opt algorithm with GA.In simulation results,by the comparison of the simulated annealing(SA)algorithm and GA,the proposed approach indicates that it can provide better solutions in a short time.
基金Foundation item: the National Science & Technology Pillar Program (Nos. 2011BAH21B02 and 2011BAH21B03) and the Chengdu Major Scientific and Technological Achievements (No. 11zHzD038)
文摘For massive order allocation problem of the third party logistics (TPL) in ecommerce, this paper proposes a general order allocation model based on cloud architecture and hybrid genetic algorithm (GA), implementing cloud deployable MapReduce (MR) code to parallelize allocation process, using heuristic rule to fix illegal chromosome during encoding process and adopting mixed integer programming (MIP) as fitness flmction to guarantee rationality of chromosome fitness. The simulation experiment shows that in mass processing of orders, the model performance in a multi-server cluster environment is remarkable superior to that in stand-alone environment. This model can be directly applied to cloud based logistics information platform (LIP) in near future, implementing fast auto-allocation for massive concurrent orders, with great application value.
文摘Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.
基金supported by the National Natural Science Foundation of China(No.51675261)Jiangsu Province Key R & D Programs(No.BE2016180)
文摘Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is proposed to identify the stiffness and damping coefficients of a rotor AMB system.This method combines the global optimization capability of the genetic algorithm(GA)and the local search ability of Nelder-Mead simplex method.The supporting parameters are obtained using the hybrid GA based on the experimental unbalance response calculated through the transfer matrix method.To verify the identified results,the experimental stiffness and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the finite element method.The close agreement between the simulation and experimental data indicates that the proposed identified algorithm can effectively identify the AMBs supporting parameters.
文摘A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.
基金funded by the Ministry of Industry and Information Technology of the People’s Republic of China(Nos.[2018]473,[2019]331).
文摘Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach.
基金This project was supported by the National Natural Science Foundation of China the Open Project Foundation of Comput-er Software New Technique National Key Laboratory of Nanjing University.
文摘This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.
基金Supported by Natural Science Foundation of Tianjin (No 09JCYBJC01800, No07JCYBJC05200)Application Mathematic Center of Liu Hui, Nankai University and Tianjin University (No2001T08)
文摘This paper proposes a multi-period portfolio investment model with class constraints, transaction cost, and indivisible securities. When an investor joins the securities market for the first time, he should decide on portfolio investment based on the practical conditions of securities market. In addition, investors should adjust the portfolio according to market changes, changing or not changing the category of risky securities. Markowitz meanvariance approach is applied to the multi-period portfolio selection problems. Because the sub-models are optimal mixed integer program, whose objective function is not unimodal and feasible set is with a particular structure, traditional optimization method usually fails to find a globally optimal solution. So this paper employs the hybrid genetic algorithm to solve the problem. Investment policies that accord with finance market and are easy to operate for investors are put forward with an illustration of application.
基金Supported by the National Key Technology and Equipment Project of the 10th Five-Year Plan (ZZ02-03-03-01)
文摘According to the cutting stock problem of 2-dimensional shapes, a nesting system (NS) based on hybrid genetic algorithm (HGA) is established. The system optimizes the sequence and angles of polygons with hybrid Genetic Algorithm to accomplish the superior solution. It nests the irregular shape directly without covering irregular shapes with a rectangle. It also improves the decoding strategy of 2-dimensional shapes nesting based on the classical bottom-left strategy, makes the new strategy be universal to convex polygons, concave polygons and line-circular composted polygons.
文摘A novel algorithm is presented for supervised inductive learning by integrating a genetic algorithm with hot'tom-up induction process.The hybrid learning algorithm has been implemented in C on a personal computer(386DX/40).The performance of the algorithm has been evaluated by applying it to 11-multiplexer problem and the results show that the algorithm's accuracy is higher than the others[5,12, 13].
文摘In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.
文摘in this article a novel learning method is proposed,which is a combination of GA and the bottomup induction process. The method has been implemented in a system called KAA,and we evaluate it on a multiplexer problem,which shows the higher predict accuracy even in a noisy environment.
基金This project was funded by the National Natural Science Foundation of China(41871320,61872139)the Provincial and Municipal Joint Fund of Hunan Provincial Natural Science Foundation of China(2018JJ4052)+2 种基金Hunan Provincial Natural Science Foundation of China(2017JJ2081)the Key Project of Hunan Provincial Education Department(19A172)the Scientific Research Fund of Hunan Provincial Education Department(18K060).
文摘In the large-scale logistics distribution of single logistic center,the method based on traditional genetic algorithm is slow in evolution and easy to fall into the local optimal solution.Addressing at this issue,we propose a novel approach of exploring hybrid genetic algorithm based large-scale logistic distribution for BBG supermarket.We integrate greedy algorithm and hillclimbing algorithm into genetic algorithm.Greedy algorithm is applied to initialize the population,and then hill-climbing algorithm is used to optimize individuals in each generation after selection,crossover and mutation.Our approach is evaluated on the dataset of BBG Supermarket which is one of the top 10 supermarkets in China.Experimental results show that our method outperforms some other methods in the field.
文摘The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded by the environmental regulations, consumer awareness and the prevailing social consciousness. In this context, this research work addresses a closed loop supply chain network problem of fashion leather goods industry, with an objective of minimizing the total cost of the entire supply chain and also reducing the total waste from the end of life product returns. The research work commenced with a literature review on the reverse and closed loop supply chain network design problems of fashion and leather goods industry dealt in the past. Then, the identified CLSCND problem is solved using a mathematical model based on Mixed Integer Non-Linear Programme (MINLP) and then a suitable Hybrid Genetic Algorithm (HGA) developed for the CLSCND is implemented for obtaining optimum solution. Both the MINLP model and HGA are customized as per the CLSCND problem chosen and implemented for the industrial case of an Indian Fashion Leather Goods Industry. Finally, the solutions obtained for MINLP model in LINGO 15 and for HGA in VB.NET platform are compared and presented. The optimum solution obtained from the suitable HGA is illustrated as an optimum shipment pattern for the closed loop supply chain network design problem of the fashion leather goods industry case.