In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B...In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.展开更多
The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also inclu...The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results.展开更多
A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm i...A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method.展开更多
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a...A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.展开更多
Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity...Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching.展开更多
In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment a...In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network.展开更多
In medical science for envisaging human body’s phenomenal structure a major part has been driven by image processing techniques.Major objective of this work is to detect of cerebral atherosclerosis for image segmenta...In medical science for envisaging human body’s phenomenal structure a major part has been driven by image processing techniques.Major objective of this work is to detect of cerebral atherosclerosis for image segmentation applica-tion.Detection of some abnormal structures in human body has become a difficult task to complete with some simple images.For expounding and distinguishing neural architecture of human brain in an effective manner,MRI(Magnetic Reso-nance Imaging)is one of the most suitable and significant technique.Here we work on detection of Cerebral Atherosclerosis from MRI images of patients.Cer-ebral Atherosclerosis is a cerebral vascular disease causes narrowing of the arteries due to buildup of fatty plaque inside the blood vessels of the brain.It leads to Ischemic stroke if not diagnosed early.Stroke affects majorly old age people and percentage of affected women is more compared to men.Results:Preproces-sing is done by using alpha trimmed meanfilter which is used to remove noise and also it enhances the image.Segmentation of cerebral atherosclerosis is done by using K-means clustering,Contextual clustering,and proposed Hybrid algo-rithm.Various parameters like Correlation,Pixel density,energy is determined and from the analysis of parameters it is determined that proposed Hybrid algo-rithm is efficient.展开更多
Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web de...Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.展开更多
Abstract In this paper, we introduce a hybrid algorithm to search the approximate solution of TSP, which contains the advantage of Lin's algorithm, simulate annealing algorithm, genetic algorithm and Domain Decomp...Abstract In this paper, we introduce a hybrid algorithm to search the approximate solution of TSP, which contains the advantage of Lin's algorithm, simulate annealing algorithm, genetic algorithm and Domain Decomposition method. The algorithm has been successfully used in solving many TSP problems from 100 to 100000 cities. Those applications demonstrate the efficiency of the algorithm.展开更多
Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband...Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.展开更多
Aiming at the problems of image super-resolution algorithm with many convolutional neural networks, such as large parameters, large computational complexity and blurred image texture, we propose a new algorithm model....Aiming at the problems of image super-resolution algorithm with many convolutional neural networks, such as large parameters, large computational complexity and blurred image texture, we propose a new algorithm model. The classical convolutional neural network is improved, the convolution kernel size is adjusted, and the parameters are reduced;the pooling layer is added to reduce the dimension. Reduced computational complexity, increased learning rate, and reduced training time. The iterative back-projection algorithm is combined with the convolutional neural network to create a new algorithm model. The experimental results show that compared with the traditional facial illusion method, the proposed method can obtain better performance.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco...Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm.展开更多
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject...The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.展开更多
To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)i...To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)is developed to find the optimal solution. With the proposed integrated model, the planning of generators and transmission lines can be worked out simultaneously,which outweighs the disadvantages of separate planning,for instance, unable to consider the influence of power grid during the planning of generation, or insufficient to plan the transmission system without enough information of generation. The integrated planning model takes into account both the outage cost and the shipping cost, which makes the model more practical for offshore oilfield power systems. The planning problem formulated based on the proposed model is a mixed integer nonlinear programming problem of very high computational complexity, which is difficult to solve by regular mathematical methods. A comprehensive optimization method based on GTHA is also developed to search the best solution efficiently.Finally, a case study on the planning of a 50-bus offshore oilfield power system is conducted, and the obtained results fully demonstrate the effectiveness of the presented model and method.展开更多
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th...The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.展开更多
Over recent decades,the artificial neural networks(ANNs)have been applied as an effective approach for detecting damage in construction materials.However,to achieve a superior result of defect identification,they have...Over recent decades,the artificial neural networks(ANNs)have been applied as an effective approach for detecting damage in construction materials.However,to achieve a superior result of defect identification,they have to overcome some shortcomings,for instance slow convergence or stagnancy in local minima.Therefore,optimization algorithms with a global search ability are used to enhance ANNs,i.e.to increase the rate of convergence and to reach a global minimum.This paper introduces a two-stage approach for failure identification in a steel beam.In the first step,the presence of defects and their positions are identified by modal indices.In the second step,a feedforward neural network,improved by a hybrid particle swarm optimization and gravitational search algorithm,namely FNN-PSOGSA,is used to quantify the severity of damage.Finite element(FE)models of the beam for two damage scenarios are used to certify the accuracy and reliability of the proposed method.For comparison,a traditional ANN is also used to estimate the severity of the damage.The obtained results prove that the proposed approach can be used effectively for damage detection and quantification.展开更多
Land surface temperature(LST)retrieval from thermal infrared(TIR)remote sensing image requires atmospheric and land surface emissivity(LSE)data that are sometimes unattainable.To overcome this problem,a hybrid algorit...Land surface temperature(LST)retrieval from thermal infrared(TIR)remote sensing image requires atmospheric and land surface emissivity(LSE)data that are sometimes unattainable.To overcome this problem,a hybrid algorithm is developed to retrieve LST without atmospheric correction and LSE data input,by combining the split-window(SW)and temperature–emissivity separation(TES)algorithms.The SW algorithm is used to estimate surface-emitting radiance in adjacent TIR bands,and such radiance is applied to the TES algorithm to retrieve LST and LSE.The hybrid algorithm is implemented on five TIR bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER).Analysis shows that the hybrid algorithm can estimate LST and LSE with an error of 0.5–1.5 K and 0.007–0.020,respectively.Moreover,the LST error of the hybrid algorithm is equivalent to that of the original ASTER TES algorithm,involving 1%–2%uncertainty in atmospheric correction.The hybrid algorithm is validated using ground-measured LST at six sites and ASTER LST products,indicating that the temperature difference between the ASTER TES algorithm and the hybrid algorithm is 1.4 K and about 2.5–3.5 K compared to the ground measurement.Finally,the hybrid algorithm is applied to at two places.展开更多
Though vortex search(VS) algorithm has good performance in solving global numerical optimization problems, it cannot fully search the whole space occasionally. Combining the vortex search algorithm and the artificia...Though vortex search(VS) algorithm has good performance in solving global numerical optimization problems, it cannot fully search the whole space occasionally. Combining the vortex search algorithm and the artificial bee colony algorithm(ABC) which has good performance in exploration, we present a HVS(hybrid vortex search) algorithm to solve the numerical optimization problems. We first use the employed bees and onlooker bees of ABC algorithm to find a solution, and then adopt the VS algorithm to find the best solution. In the meantime, we cannot treat the best solution so far as the center of the algorithm all the time. The algorithm is tested by 50 benchmark functions. The numerical results show the HVS algorithm has superior performance over the ABC and the VS algorithms.展开更多
基金Project(50175110) supported by the National Natural Science Foundation of ChinaProject(2009bsxt019) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.
基金The NSF(11071053)of ChinaNatural Science Basic Research Plan(2014JM2-1003)in Shaanxi Province of ChinaScientific Research Project(YD2016-12)of Yan’an University
文摘The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results.
基金Aeronautical Science Foundation of China (02A52002), National Natural Science Foundation of China(10372043)
文摘A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method.
文摘A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2002CCA00700)
文摘Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching.
基金Project (70671039) supported by the National Natural Science Foundation of China
文摘In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network.
文摘In medical science for envisaging human body’s phenomenal structure a major part has been driven by image processing techniques.Major objective of this work is to detect of cerebral atherosclerosis for image segmentation applica-tion.Detection of some abnormal structures in human body has become a difficult task to complete with some simple images.For expounding and distinguishing neural architecture of human brain in an effective manner,MRI(Magnetic Reso-nance Imaging)is one of the most suitable and significant technique.Here we work on detection of Cerebral Atherosclerosis from MRI images of patients.Cer-ebral Atherosclerosis is a cerebral vascular disease causes narrowing of the arteries due to buildup of fatty plaque inside the blood vessels of the brain.It leads to Ischemic stroke if not diagnosed early.Stroke affects majorly old age people and percentage of affected women is more compared to men.Results:Preproces-sing is done by using alpha trimmed meanfilter which is used to remove noise and also it enhances the image.Segmentation of cerebral atherosclerosis is done by using K-means clustering,Contextual clustering,and proposed Hybrid algo-rithm.Various parameters like Correlation,Pixel density,energy is determined and from the analysis of parameters it is determined that proposed Hybrid algo-rithm is efficient.
文摘Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.
文摘Abstract In this paper, we introduce a hybrid algorithm to search the approximate solution of TSP, which contains the advantage of Lin's algorithm, simulate annealing algorithm, genetic algorithm and Domain Decomposition method. The algorithm has been successfully used in solving many TSP problems from 100 to 100000 cities. Those applications demonstrate the efficiency of the algorithm.
文摘Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.
文摘Aiming at the problems of image super-resolution algorithm with many convolutional neural networks, such as large parameters, large computational complexity and blurred image texture, we propose a new algorithm model. The classical convolutional neural network is improved, the convolution kernel size is adjusted, and the parameters are reduced;the pooling layer is added to reduce the dimension. Reduced computational complexity, increased learning rate, and reduced training time. The iterative back-projection algorithm is combined with the convolutional neural network to create a new algorithm model. The experimental results show that compared with the traditional facial illusion method, the proposed method can obtain better performance.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金supported by the National Natural Science Foundation of China[Grant No.12461035]Qinghai University Students Innovative Training Program Project[2024-QX-57].
文摘Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China,grant numbers 51704253 and 52474084.
文摘The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.
基金supported by National Natural Science Foundation of China (No. 51322701)National High Technology Research and Development Program of China (863 Program) (No. 2012AA050216)
文摘To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)is developed to find the optimal solution. With the proposed integrated model, the planning of generators and transmission lines can be worked out simultaneously,which outweighs the disadvantages of separate planning,for instance, unable to consider the influence of power grid during the planning of generation, or insufficient to plan the transmission system without enough information of generation. The integrated planning model takes into account both the outage cost and the shipping cost, which makes the model more practical for offshore oilfield power systems. The planning problem formulated based on the proposed model is a mixed integer nonlinear programming problem of very high computational complexity, which is difficult to solve by regular mathematical methods. A comprehensive optimization method based on GTHA is also developed to search the best solution efficiently.Finally, a case study on the planning of a 50-bus offshore oilfield power system is conducted, and the obtained results fully demonstrate the effectiveness of the presented model and method.
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
基金Supported by the National Natural Science Foundation of China(1117202591116)
文摘The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.
基金the Vlaamse Interuniversitaire Raad University Development Cooperation(VLIR-UOS)Team Project(No.VN2018TEA479A103)the Flemish Government,Belgium。
文摘Over recent decades,the artificial neural networks(ANNs)have been applied as an effective approach for detecting damage in construction materials.However,to achieve a superior result of defect identification,they have to overcome some shortcomings,for instance slow convergence or stagnancy in local minima.Therefore,optimization algorithms with a global search ability are used to enhance ANNs,i.e.to increase the rate of convergence and to reach a global minimum.This paper introduces a two-stage approach for failure identification in a steel beam.In the first step,the presence of defects and their positions are identified by modal indices.In the second step,a feedforward neural network,improved by a hybrid particle swarm optimization and gravitational search algorithm,namely FNN-PSOGSA,is used to quantify the severity of damage.Finite element(FE)models of the beam for two damage scenarios are used to certify the accuracy and reliability of the proposed method.For comparison,a traditional ANN is also used to estimate the severity of the damage.The obtained results prove that the proposed approach can be used effectively for damage detection and quantification.
基金supported by the National Natural Science Foundation of China(grant number 41771369)the National High-Resolution Earth Observation Project of China(grant numbers 11-Y20A32-9001-15/17,04-Y30B01-9001-18/20-1-4)+1 种基金Beijing Nova Program(grant number Z171100001117079)National Key Research and Development Program of China(grant number 2017YFB0503905-05).
文摘Land surface temperature(LST)retrieval from thermal infrared(TIR)remote sensing image requires atmospheric and land surface emissivity(LSE)data that are sometimes unattainable.To overcome this problem,a hybrid algorithm is developed to retrieve LST without atmospheric correction and LSE data input,by combining the split-window(SW)and temperature–emissivity separation(TES)algorithms.The SW algorithm is used to estimate surface-emitting radiance in adjacent TIR bands,and such radiance is applied to the TES algorithm to retrieve LST and LSE.The hybrid algorithm is implemented on five TIR bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER).Analysis shows that the hybrid algorithm can estimate LST and LSE with an error of 0.5–1.5 K and 0.007–0.020,respectively.Moreover,the LST error of the hybrid algorithm is equivalent to that of the original ASTER TES algorithm,involving 1%–2%uncertainty in atmospheric correction.The hybrid algorithm is validated using ground-measured LST at six sites and ASTER LST products,indicating that the temperature difference between the ASTER TES algorithm and the hybrid algorithm is 1.4 K and about 2.5–3.5 K compared to the ground measurement.Finally,the hybrid algorithm is applied to at two places.
基金Supported by the National Natural Science Foundation of China(71471140)
文摘Though vortex search(VS) algorithm has good performance in solving global numerical optimization problems, it cannot fully search the whole space occasionally. Combining the vortex search algorithm and the artificial bee colony algorithm(ABC) which has good performance in exploration, we present a HVS(hybrid vortex search) algorithm to solve the numerical optimization problems. We first use the employed bees and onlooker bees of ABC algorithm to find a solution, and then adopt the VS algorithm to find the best solution. In the meantime, we cannot treat the best solution so far as the center of the algorithm all the time. The algorithm is tested by 50 benchmark functions. The numerical results show the HVS algorithm has superior performance over the ABC and the VS algorithms.