为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。...为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。展开更多
为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预...为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。展开更多
为改善某款混联插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的燃油经济性,针对传统模糊控制中模糊隶属函数存在主观性过强、缺乏理论支撑等问题,提出了一种新的方法来优化PHEV模糊控制能量管理策略。首先,通过构建以整...为改善某款混联插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的燃油经济性,针对传统模糊控制中模糊隶属函数存在主观性过强、缺乏理论支撑等问题,提出了一种新的方法来优化PHEV模糊控制能量管理策略。首先,通过构建以整车的需求转矩和电池荷电状态作为输入、发动机转矩作为输出的模糊控制器,选取21个隶属度函数变量,以优化燃油经济性为目标,利用混沌方式改进麻雀搜索优化算法进行优化;然后,通过Matlab/Simulink搭建控制策略,并联合AVL Cruise平台搭建的整车模型进行仿真,验证优化模糊控制能量管理策略的有效性。仿真结果表明,在全球轻型汽车测试循环(world light vehicle test cycle,WLTC)工况下,基于混沌方式改进麻雀搜索算法优化的模糊控制能量管理策略与原始模糊控制能量管理策略相比,百公里燃油消耗减少2.1%、NO_(x)气体排放减少13.3%、CO气体排放量下降1.3%、HC气体排放量减少2.9%,有效地提高整车燃油经济性,减少污染气体排放。展开更多
文摘为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。
文摘为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。
文摘为改善某款混联插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的燃油经济性,针对传统模糊控制中模糊隶属函数存在主观性过强、缺乏理论支撑等问题,提出了一种新的方法来优化PHEV模糊控制能量管理策略。首先,通过构建以整车的需求转矩和电池荷电状态作为输入、发动机转矩作为输出的模糊控制器,选取21个隶属度函数变量,以优化燃油经济性为目标,利用混沌方式改进麻雀搜索优化算法进行优化;然后,通过Matlab/Simulink搭建控制策略,并联合AVL Cruise平台搭建的整车模型进行仿真,验证优化模糊控制能量管理策略的有效性。仿真结果表明,在全球轻型汽车测试循环(world light vehicle test cycle,WLTC)工况下,基于混沌方式改进麻雀搜索算法优化的模糊控制能量管理策略与原始模糊控制能量管理策略相比,百公里燃油消耗减少2.1%、NO_(x)气体排放减少13.3%、CO气体排放量下降1.3%、HC气体排放量减少2.9%,有效地提高整车燃油经济性,减少污染气体排放。