期刊文献+
共找到288篇文章
< 1 2 15 >
每页显示 20 50 100
Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow
1
作者 Baydaa Abdul Kareem Salah L.Zubaidi +1 位作者 Nadhir Al-Ansari Yousif Raad Muhsen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期1-41,共41页
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques... Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms. 展开更多
关键词 Univariate streamflow machine learning hybrid model data pre-processing performance metrics
在线阅读 下载PDF
Comparison of processing speed of NRS-ANN hybrid and ANN models for oil production rate estimation of reservoir under waterflooding
2
作者 Paul Theophily Nsulangi Werneld Egno Ngongi +1 位作者 John Mbogo Kafuku Guan Zhen Liang 《Artificial Intelligence in Geosciences》 2025年第2期101-112,共12页
This study compared the predictive performance and processing speed of an artificial neural network(ANN)and a hybrid of a numerical reservoir simulation(NRS)and artificial neural network(NRS-ANN)models in estimating t... This study compared the predictive performance and processing speed of an artificial neural network(ANN)and a hybrid of a numerical reservoir simulation(NRS)and artificial neural network(NRS-ANN)models in estimating the oil production rate of the ZH86 reservoir block under waterflood recovery.The historical input variables:reservoir pressure,reservoir pore volume containing hydrocarbons,reservoir pore volume containing water and reservoir water injection rate used as inputs for ANN models.To create the NRS-ANN hybrid models,314 data sets extracted from the NRS model,which included reservoir pressure,reservoir pore volume containing hy-drocarbons,reservoir pore volume containing water and reservoir water injection rate were used.The output of the models was the historical oil production rate(HOPR in m^(3) per day)recorded from the ZH86 reservoir block.Models were developed using MATLAB R2021a and trained with 25 models in three replicate conditions(2,4 and 6),each at 1000 epochs.A comparative analysis indicated that,for all 25 models,the ANN outperformed the NRS-ANN in terms of processing speed and prediction performance.ANN models achieved an average of R^(2) and MAE of 0.8433 and 8.0964 m^(3)/day values,respectively,while NRS-ANN hybrid models achieved an average of R^(2) and MAE of 0.7828 and 8.2484 m^(3)/day values,respectively.In addition,ANN models achieved a processing speed of 49 epochs/sec,32 epochs/sec,and 24 epochs/sec after 2,4,and 6 replicates,respectively.Whereas the NRS-ANN hybrid models achieved lower average processing speeds of 45 epochs/sec,23 epochs/sec and 20 epochs/sec.In addition,the ANN optimal model outperforms the NRS-ANN model in terms of both processing speed and accuracy.The ANN optimal model achieved a speed of 336.44 epochs/sec,compared to the NRS-ANN hybrid optimal model,which achieved a speed of 52.16 epochs/sec.The ANN optimal model achieved lower RMSE and MAE values of 7.9291 m^(3)/day and 5.3855 m^(3)/day in the validation dataset compared with the hybrid ANS optimal model,which achieved 13.6821 m^(3)/day and 9.2047 m^(3)/day,respectively.The study also showed that the ANN optimal model consistently achieved higher R^(2) values:0.9472,0.9284 and 0.9316 in the training,test and validation data sets.Whereas the NRS-ANN hybrid optimal yielded lower R^(2) values of 0.8030,0.8622 and 0.7776 for the training,testing and validation datasets.The study showed that ANN models are a more effective and reliable tool,as they balance both processing speed and accuracy in estimating the oil production rate of the ZH86 reservoir block under the waterflooding recovery method. 展开更多
关键词 Oil production rate prediction Processing speed of the NRS-ANN and ANN models Performance of the NRS-ANN and ANN models Artificial Neural Network(ANN) hybrid model of NRS and ANN
在线阅读 下载PDF
Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: A case study at Gia Lai province, Vietnam 被引量:1
3
作者 Hoang Phan Hai Yen Binh Thai Pham +7 位作者 Tran Van Phong Duong Hai Ha Romulus Costache Hiep Van Le Huu Duy Nguyen Mahdis Amiri Nguyen Van Tao Indra Prakash 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期54-68,共15页
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensembl... The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters. 展开更多
关键词 Locally weighted learning hybrid models Groundwater potential GIS VIETNAM
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
4
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 hybrid Model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management
5
作者 Moein Tosan Mohammad Reza Gharib +1 位作者 Nasrin Fathollahzadeh Attar Ali Maroosi 《Computer Modeling in Engineering & Sciences》 2025年第2期1109-1154,共46页
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3... Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management. 展开更多
关键词 Artificial neural networks bibliometric analysis EVAPOTRANSPIRATION hybrid models research trends systematic literature review water resources management
在线阅读 下载PDF
Slope stability prediction of circular mode failure by machine learning models based on Bayesian Optimizer
6
作者 Mohammad Hossein KADKHODAEI Ebrahim GHASEMI Mohammad Hossein FAZEL 《Journal of Mountain Science》 2025年第4期1482-1498,共17页
Assessing the stability of slopes is one of the crucial tasks of geotechnical engineering for assessing and managing risks related to natural hazards,directly affecting safety and sustainable development.This study pr... Assessing the stability of slopes is one of the crucial tasks of geotechnical engineering for assessing and managing risks related to natural hazards,directly affecting safety and sustainable development.This study primarily focuses on developing robust and practical hybrid models to predict the slope stability status of circular failure mode.For this purpose,three robust models were developed using a database including 627 case histories of slope stability status.The models were developed using the random forest(RF),support vector machine(SVM),and extreme gradient boosting(XGB)techniques,employing 5-fold cross validation approach.To enhance the performance of models,this study employs Bayesian optimizer(BO)to fine-tuning their hyperparameters.The results indicate that the performance order of the three developed models is RF-BO>SVM-BO>XGB-BO.Furthermore,comparing the developed models with previous models,it was found that the RF-BO model can effectively determine the slope stability status with outstanding performance.This implies that the RF-BO model could serve as a dependable tool for project managers,assisting in the evaluation of slope stability during both the design and operational phases of projects,despite the inherent challenges in this domain.The results regarding the importance of influencing parameters indicate that cohesion,friction angle,and slope height exert the most significant impact on slope stability status.This suggests that concentrating on these parameters and employing the RF-BO model can effectively mitigate the severity of geohazards in the short-term and contribute to the attainment of long-term sustainable development objectives. 展开更多
关键词 Slope stability Circular failure Machine learning Bayesian optimizer hybrid models
原文传递
Flow reconstructions and aerodynamic shape optimization of turbomachinery blades by POD-based hybrid models 被引量:5
7
作者 LUO JiaQi ZHU YaLu +1 位作者 TANG Xiao LIU Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第11期1658-1673,共16页
This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a... This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization. 展开更多
关键词 flow reconstruction aerodynamic design optimization proper orthogonal decomposition TURBOMACHINERY hybrid model computational fluid dynamics TRANSONIC
原文传递
A Hybrid Neural Network and Box-Jenkins Models for Time Series Forecasting 被引量:1
8
作者 Mohammad Hadwan Basheer M.Al-Maqaleh +2 位作者 Fuad N.Al-Badani Rehan Ullah Khan Mohammed A.Al-Hagery 《Computers, Materials & Continua》 SCIE EI 2022年第3期4829-4845,共17页
Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is ... Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is insufficient forecasting accuracy.The present study proposes a hybrid forecastingmethods to address this need.The proposed method includes three models.The first model is based on the autoregressive integrated moving average(ARIMA)statistical model;the second model is a back propagation neural network(BPNN)with adaptive slope and momentum parameters;and the thirdmodel is a hybridization between ARIMA and BPNN(ARIMA/BPNN)and artificial neural networks and ARIMA(ARIMA/ANN)to gain the benefits of linear and nonlinearmodeling.The forecasting models proposed in this study are used to predict the indices of the consumer price index(CPI),and predict the expected number of cancer patients in the Ibb Province in Yemen.Statistical standard measures used to evaluate the proposed method include(i)mean square error,(ii)mean absolute error,(iii)root mean square error,and(iv)mean absolute percentage error.Based on the computational results,the improvement rate of forecasting the CPI dataset was 5%,71%,and 4%for ARIMA/BPNN model,ARIMA/ANN model,and BPNN model respectively;while the result for cancer patients’dataset was 7%,200%,and 19%for ARIMA/BPNNmodel,ARIMA/ANN model,and BPNNmodel respectively.Therefore,it is obvious that the proposed method reduced the randomness degree,and the alterations affected the time series with data non-linearity.The ARIMA/ANN model outperformed each of its components when it was applied separately in terms of increasing the accuracy of forecasting and decreasing the overall errors of forecasting. 展开更多
关键词 hybrid model forecasting non-linear data time series models cancer patients neural networks box-jenkins consumer price index
在线阅读 下载PDF
Efficient knowledge distillation for hybrid models:A vision transformer‐convolutional neural network to convolutional neural network approach for classifying remote sensing images
9
作者 Huaxiang Song Yuxuan Yuan +2 位作者 Zhiwei Ouyang Yu Yang Hui Xiang 《IET Cyber-Systems and Robotics》 EI 2024年第3期1-22,共22页
In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the re... In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the realm of remote sensing images(RSIs),existing KD research studies are not only scarce but also lack competitiveness.This issue significantly impedes the deployment of the notable advantages of ViTs and CNNs.To tackle this,the authors introduce a novel hybrid‐model KD approach named HMKD‐Net,which comprises a CNN‐ViT ensemble teacher and a CNN student.Contrary to popular opinion,the authors posit that the sparsity in RSI data distribution limits the effectiveness and efficiency of hybrid‐model knowledge transfer.As a solution,a simple yet innovative method to handle variances during the KD phase is suggested,leading to substantial enhancements in the effectiveness and efficiency of hybrid knowledge transfer.The authors assessed the performance of HMKD‐Net on three RSI datasets.The findings indicate that HMKD‐Net significantly outperforms other cuttingedge methods while maintaining a significantly smaller size.Specifically,HMKD‐Net exceeds other KD‐based methods with a maximum accuracy improvement of 22.8%across various datasets.As ablation experiments indicated,HMKD‐Net has cut down on time expenses by about 80%in the KD process.This research study validates that the hybrid‐model KD technique can be more effective and efficient if the data distribution sparsity in RSIs is well handled. 展开更多
关键词 hybrid‐model knowledge distillation remote sensing image classification vision transformer
原文传递
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network 被引量:1
10
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping hybrid model Physically-based model Convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation 被引量:1
11
作者 Hamza Murad Khan Anwar Khan +3 位作者 Santos Gracia Villar Luis Alonso DzulLopez Abdulaziz Almaleh Abdullah M.Al-Qahtani 《Computers, Materials & Continua》 2025年第5期3369-3388,共20页
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models... Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes. 展开更多
关键词 Short-term traffic prediction sequential time series prediction TPE tree-structured parzen estimator LSTM hyperparameter tuning hybrid prediction model
在线阅读 下载PDF
FRACTALS OF HYBRID ORBITALS AND THEIR APPLICATIONS IN THE ENZYME MODELS
12
作者 Hou Qiang LI Shu Hua CHEN Hua Ming ZHAO Department of Chemistry.Sichuan University.Chengdu 610064 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期257-260,共4页
An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridizat... An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridization,e.g.D_f=2ln2/ln[2(1+α/(1-α))]for the spa type, where a denotes the fraction of the s orbital in the hybridized molecular orbital.This relationship and the five fractal theorems introduced by the present paper play an important role in the investigations of the model of imitative enzyme. 展开更多
关键词 FRACTALS OF hybrid ORBITALS AND THEIR APPLICATIONS IN THE ENZYME models NATURE
在线阅读 下载PDF
Application of neural-network hybrid models in estimating the infection functions of nonlinear epidemic models
13
作者 Chentong Li Changsheng Zhou +1 位作者 Junmin Liu Yao Rong 《International Journal of Biomathematics》 2024年第6期141-159,共19页
Hybrid neural network models are effective in analyzing time-series data by combining the strengths of neural networks and differential equation models.Although most studies have focused on linear hybrid models,few ha... Hybrid neural network models are effective in analyzing time-series data by combining the strengths of neural networks and differential equation models.Although most studies have focused on linear hybrid models,few have examined nonlinear problems.This work explores the potential of a hybrid nonlinear epidemic neural network in predicting the correct infection function of an epidemic model.We design a novel loss function by combining bifurcation theory and mean-squared error loss to ensure the trainability of the hybrid model.Additionally,we identify unique existence conditions that support ordinary differential equations for estimating the correct infection function.Moreover,numerical experiments using the Runge-Kutta method confirm our proposed model's soundness both on our synthetic data and the real COVID-19 data. 展开更多
关键词 Differential equations epidemic model hybrid model neural network
原文传递
Enhancing patient rehabilitation predictions with a hybrid anomaly detection model:Density-based clustering and interquartile range methods
14
作者 Murad Ali Khan Jong-Hyun Jang +5 位作者 Naeem Iqbal Harun Jamil Syed Shehryar Ali Naqvi Salabat Khan Jae-Chul Kim Do-Hyeun Kim 《CAAI Transactions on Intelligence Technology》 2025年第4期983-1006,共24页
In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reve... In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reveals a pronounced focus on refining diagnostic accuracy,personalising treatment plans,and optimising resource allocation to enhance clinical outcomes.Nonetheless,this domain faces unique challenges,such as irregular data collection,inconsistent data quality,and patient-specific structural variations.This paper proposed a novel hybrid approach that integrates heuristic and stochastic methods for anomaly detection in patient clinical data to address these challenges.The strategy combines HPO-based optimal Density-Based Spatial Clustering of Applications with Noise for clustering patient exercise data,facilitating efficient anomaly identification.Subsequently,a stochastic method based on the Interquartile Range filters unreliable data points,ensuring that medical tools and professionals receive only the most pertinent and accurate information.The primary objective of this study is to equip healthcare pro-fessionals and researchers with a robust tool for managing extensive,high-dimensional clinical datasets,enabling effective isolation and removal of aberrant data points.Furthermore,a sophisticated regression model has been developed using Automated Machine Learning(AutoML)to assess the impact of the ensemble abnormal pattern detection approach.Various statistical error estimation techniques validate the efficacy of the hybrid approach alongside AutoML.Experimental results show that implementing this innovative hybrid model on patient rehabilitation data leads to a notable enhance-ment in AutoML performance,with an average improvement of 0.041 in the R2 score,surpassing the effectiveness of traditional regression models. 展开更多
关键词 anomaly detection deep learning density-based clustering hybrid model IQR regression
在线阅读 下载PDF
Hybrid modelling incorporating reaction and mechanistic data for accelerating the development of isooctanol oxidation
15
作者 Xin Zhou Ce Liu +9 位作者 Zhibo Zhang Xinrui Song Haiyan Luo Weitao Zhang Lianying Wu Hui Zhao Yibin Liu Xiaobo Chen Hao Yan Chaohe Yang 《Chinese Journal of Chemical Engineering》 2025年第4期166-183,共18页
Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited exper... Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited experimental data,utilizing the traditional numerical method of computational fluid dynamics(CFD)to simulate the gas-liquid two-phase flow reactor can mitigate the risk of danger under varying working conditions.However,the calculation process is highly time-consuming.Therefore,by integrating process simulation,computational fluid dynamics,and deep learning technologies,an intelligent hybrid chemical model based on machine learning was proposed to expedite CFD calculations,enhance the prediction of flow fields,conversion rates,and concentrations inside the reactor,and offer insights for designing and optimizing the reactor for the alcohol oxidation system.The results show that the hybrid model based on the long and short-term memory neural network achieves 99.8%accuracy in conversion rate prediction and 99.9%accuracy in product concentration prediction.Through validation,the hybrid model is accelerated by about 360 times compared with instrumental analysis in conversion rate prediction and about 45 times compared with CFD calculation in concentration distribution prediction.This hybrid model can quickly predict the conversion rate and product concentration distribution in the gas-liquid two-phase flow reactor and provide a model reference for fast prediction and accurate control in the actual chemical production process. 展开更多
关键词 hybrid modelling Numerical simulation Deep learning Soft measurements Computational acceleration
在线阅读 下载PDF
Hybrid prediction model for strip width based on improved mechanism and data-driven model
16
作者 Jia-liang Wang Jing-cheng Wang +2 位作者 Chao-bo Chen Kang-bo Dang Song Gao 《Journal of Iron and Steel Research International》 2025年第3期720-732,共13页
Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calc... Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control. 展开更多
关键词 Hot-rolled strip Steel width Artificial neural network Mechanism model hybrid model
原文传递
Mapping and interpretability of aftershock hazards using hybrid machine learning algorithms
17
作者 Bo Liu Haijia Wen +4 位作者 Mingrui Di Junhao Huang Mingyong Liao Jingyuan Yu Yutao Xiang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4908-4932,共25页
This study addresses gaps in aftershock prediction research by proposing an interpretable hybrid machine learning model that leverages multi-source data.The model overcomes challenges related to the selection of influ... This study addresses gaps in aftershock prediction research by proposing an interpretable hybrid machine learning model that leverages multi-source data.The model overcomes challenges related to the selection of influencing factors,model types,prediction result visualization,and decision mechanism interpretability.It integrates mainshock factors,geological features,site characteristics,and terrain conditions using geospatial information system(GIS)technology.By employing the stacking algorithm to optimize and combine XGBoost and LightGBM models,the proposed model significantly improves the prediction performance.Visualization through aftershock hazard mapping offers a robust tool for aftershock warning.The Shapley additive explanations(SHAP)model is used to explain the decision-making process from both global and local perspectives.Results show that,compared to the optimized XGBoost-CMA_ES and LightGBM-CMA_ES hybrid models,the stacking model achieves area under the curve(AUC)increases of 7.71%and 5.72% on the test set,respectively,with a maximum prediction accuracy of 0.9344.The hazard zoning map identifies high-risk areas mainly around fault lines and near the epicenter.As hazard levels rise,the proportion and density of aftershocks in these areas increase.The SHAP model results highlight the distance to fault as the most critical factor.The study integrates local explanations with on-site investigations,effectively visualizing the contributions of different factors to aftershocks.This research provides new tools and methods for enhancing aftershock warning and response. 展开更多
关键词 Aftershock hazard mapping hybrid model STACKING Shapley additive explanations(SHAP) Visual analysis
在线阅读 下载PDF
A deep learning-based hybrid model for improved SST prediction in the tropical Pacific Ocean
18
作者 Yuanzhe MA Bowen XIE +3 位作者 Zhongkun FENG Guimin SUN Cong ZHANG Shuguo YANG 《Journal of Oceanology and Limnology》 2025年第6期1709-1725,共17页
Sea surface temperature(SST)is an important ocean variable affecting climate change.It plays an important role in the interactions between the ocean and the atmosphere,and it also has an effect on the transport of hea... Sea surface temperature(SST)is an important ocean variable affecting climate change.It plays an important role in the interactions between the ocean and the atmosphere,and it also has an effect on the transport of heat,freshwater,and carbon.Therefore,accurate SST prediction is necessary for understanding climate change and protecting ocean ecosystems.In this study,we proposed a hybrid model to predict SST in the tropical Pacific Ocean based on two single deep-learning models.Results indicate that the proposed hybrid model shows superior prediction accuracy at all lead times compared to the single model.Specifically,during El Niño periods,the root mean square error,mean absolute error,and Pearson correlation coefficient of the hybrid model forecasts were approximately 0.54℃,0.40℃,and 0.98,respectively,while during La Niña periods,these metrics were 0.55℃,0.39℃,and 0.98,respectively.Notably,the hybrid model was able to capture the spatial distribution of SSTs during the El Niño-Southern Oscillation(ENSO)events more accurately relative to a single model.Moreover,the prediction results of the hybrid model in different ocean regions exhibited lower prediction errors and higher correlations.The ablation experiments showed that sea surface wind(SSW)had different effects on SST at different times.By combining SST and SSW data,the model can make more-accurate predictions under different climatic conditions.The proposed hybrid model is able to predict SSTs quickly and accurately with better robustness during ENSO. 展开更多
关键词 sea surface temperature(SST) deep learning hybrid model PREDICTION tropical Pacific Ocean
在线阅读 下载PDF
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
19
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
Hybrid ecophysiological growth model for deciduous Populus tomentosa plantation in northern China
20
作者 Serajis Salekin Mark Bloomberg +4 位作者 Benye Xi Jinqiang Liu Yang Liu Doudou Li Euan G.Mason 《Forest Ecosystems》 2025年第1期112-120,共9页
Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to... Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias. 展开更多
关键词 Growth-yield model Populus species hybrid ecophysiological modelling Deciduous trees PHENOLOGY
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部