A 20 - DOF hybrid stress element based upon Mindlin plate theory is developed using the optimization design method for thin and moderately thick plates. Numerical tests consist of the convergency and performance to th...A 20 - DOF hybrid stress element based upon Mindlin plate theory is developed using the optimization design method for thin and moderately thick plates. Numerical tests consist of the convergency and performance to the plates with arbitrary thickness and shape and of the ultimate thin plate problems.展开更多
It is well known that the boundary element method (BEM) is capable of converting a boundary- value equation into its discrete analog by a judicious application of the Green’s identity and complementary equation. Howe...It is well known that the boundary element method (BEM) is capable of converting a boundary- value equation into its discrete analog by a judicious application of the Green’s identity and complementary equation. However, for many challenging problems, the fundamental solution is either not available in a cheaply computable form or does not exist at all. Even when the fundamental solution does exist, it appears in a form that is highly non-local which inadvertently leads to a sys-tem of equations with a fully populated matrix. In this paper, fundamental solution of an auxiliary form of a governing partial differential equation coupled with the Green identity is used to discretize and localize an integro-partial differential transport equation by conversion into a boundary-domain form amenable to a hybrid boundary integral numerical formulation. It is observed that the numerical technique applied herein is able to accurately represent numerical and closed form solutions available in literature.展开更多
基金Projects Supported by the National Natural Science Foundation of China
文摘A 20 - DOF hybrid stress element based upon Mindlin plate theory is developed using the optimization design method for thin and moderately thick plates. Numerical tests consist of the convergency and performance to the plates with arbitrary thickness and shape and of the ultimate thin plate problems.
文摘It is well known that the boundary element method (BEM) is capable of converting a boundary- value equation into its discrete analog by a judicious application of the Green’s identity and complementary equation. However, for many challenging problems, the fundamental solution is either not available in a cheaply computable form or does not exist at all. Even when the fundamental solution does exist, it appears in a form that is highly non-local which inadvertently leads to a sys-tem of equations with a fully populated matrix. In this paper, fundamental solution of an auxiliary form of a governing partial differential equation coupled with the Green identity is used to discretize and localize an integro-partial differential transport equation by conversion into a boundary-domain form amenable to a hybrid boundary integral numerical formulation. It is observed that the numerical technique applied herein is able to accurately represent numerical and closed form solutions available in literature.