期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MMIF:Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention
1
作者 Jianjun Liu Yang Li +2 位作者 Xiaoting Sun Xiaohui Wang Hanjiang Luo 《Computers, Materials & Continua》 2025年第11期3551-3568,共18页
Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused inform... Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image.One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues.This paper proposes a multimodal medical image fusion network(MMIF-Net)based on multiscale hybrid attention.The method first decomposes the original image to obtain the low-rank and significant parts.Then,to utilize the features at different scales,we add amultiscalemechanism that uses three filters of different sizes to extract the features in the encoded network.Also,a hybrid attention module is introduced to obtain more image details.Finally,the fused images are reconstructed by decoding the network.We conducted experiments with clinical images from brain computed tomography/magnetic resonance.The experimental results show that the multimodal medical image fusion network method based on multiscale hybrid attention works better than other advanced fusion methods. 展开更多
关键词 Medical image fusion multiscale mechanism hybrid attention module encoded network
在线阅读 下载PDF
基于注意力机制的图像目标检测算法性能提升研究
2
作者 苏子晴 《中国科技纵横》 2025年第22期67-69,共3页
针对YOLOv5在小目标检测及复杂背景处理中性能不足的问题,本文提出融合多种注意力机制的改进方法。通过在Backbone、Neck、Head阶段分别引入CBAM、Coordinate Attention和轻量空间注意力模块,设计混合注意力模块(HAM),可以有效提升模型... 针对YOLOv5在小目标检测及复杂背景处理中性能不足的问题,本文提出融合多种注意力机制的改进方法。通过在Backbone、Neck、Head阶段分别引入CBAM、Coordinate Attention和轻量空间注意力模块,设计混合注意力模块(HAM),可以有效提升模型特征表达与定位能力。研究结果表明,改进后的模型在mAP、Recall等指标上均优于传统方法,尤其在小目标检测任务中表现突出。 展开更多
关键词 YOLOv5 注意力机制 目标检测 CBAM hybrid attention module
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部