In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly wh...Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly when their coordination structures are carefully engineered.Here,we develop a chromium-based SAC featuring a unique undercoordinated CrN_(3) configuration to boost sulfur electrochemistry.Compared with conventional CrN_(4),the CrN_(3) motif lowers 3d orbital occupancy and meanwhile activates the in-plane hybridizations with S 3p orbitals upon interaction with polysulfides,contributing to moderate adsorption strength and reduced energy barriers for bidirectional sulfur conversions.Additionally,the integration of the two-dimensional(2D)porous framework ensures abundant electrochemically active surfaces and efficiently exposed active sites.As a result,CrN_(3)-based cells demonstrate fast and durable sulfur redox reactions,enabling an ultralow capacity decay of 0.0075%per cycle over 1000 cycles and a high-rate capability of 651.9 mAh·g^(-1)at 5 C.The CrN_(3) catalyst retains robust catalytic efficiency under demanding conditions,delivering a high areal capacity of 5.53 mAh·cm^(-2) at high sulfur loading and lean electrolyte.This work establishes a compelling paradigm of SAC coordination engineering for designing advanced sulfur electrocatalysts for next-generation LSBs.展开更多
Oxaliplatin(OXA)has shown excellent potential in inducing immunogenic cell death and enhancing immunotherapy.However,the poor physicochemical properties of oxaliplatin make it difficult to achieve efficient synchronou...Oxaliplatin(OXA)has shown excellent potential in inducing immunogenic cell death and enhancing immunotherapy.However,the poor physicochemical properties of oxaliplatin make it difficult to achieve efficient synchronous delivery and synergistic immunotherapy with immune checkpoint inhibitors.To address this,we designed structurally optimized dual-wing butterfly prodrugs:oxaliplatin prodrug(POP)that enhances immunogenicity and reducible NLG919 homodimer(NSSN)that mitigates immunosuppression.Structural optimization of dual-wing butterfly prodrugs significantly enhanced lipid solubility compared to the parent drugs.It is worth noting that we assembled two dual-wing butterfly prodrugs,POP and NSSN,together into hybrid nanoassemblies(NAs),achieving advantages such as stable assembly,flexible dosing,and collaborative therapy.Dual-wing butterfly prodrug-driven hybrid NAs demonstrated enhanced antitumor efficacy and metastasis control in experimental models,with biocompatibility confirmed through biosafety evaluations.This work proposes a co-delivery strategy based on dual-wing butterfly prodrugs as a clinically translatable candidate.展开更多
In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved D...In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.展开更多
Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains...Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage.展开更多
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges be...The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship...Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.展开更多
3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have...3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion.展开更多
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金the National Natural Science Foundation of China(No.22379069)Fundamental Research Funds for the Central Universities(No.30922010304).
文摘Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly when their coordination structures are carefully engineered.Here,we develop a chromium-based SAC featuring a unique undercoordinated CrN_(3) configuration to boost sulfur electrochemistry.Compared with conventional CrN_(4),the CrN_(3) motif lowers 3d orbital occupancy and meanwhile activates the in-plane hybridizations with S 3p orbitals upon interaction with polysulfides,contributing to moderate adsorption strength and reduced energy barriers for bidirectional sulfur conversions.Additionally,the integration of the two-dimensional(2D)porous framework ensures abundant electrochemically active surfaces and efficiently exposed active sites.As a result,CrN_(3)-based cells demonstrate fast and durable sulfur redox reactions,enabling an ultralow capacity decay of 0.0075%per cycle over 1000 cycles and a high-rate capability of 651.9 mAh·g^(-1)at 5 C.The CrN_(3) catalyst retains robust catalytic efficiency under demanding conditions,delivering a high areal capacity of 5.53 mAh·cm^(-2) at high sulfur loading and lean electrolyte.This work establishes a compelling paradigm of SAC coordination engineering for designing advanced sulfur electrocatalysts for next-generation LSBs.
基金financially supported by the National Natural Science Foundation of China(No.82204317)the Liaoning Revitalization Talents Program(No.XLYC2403107)+1 种基金the Excellent Youth Science Foundation of Liaoning Province(No.2024JH3/10200046)the Basic Scientific Research Project of Liaoning Provincial Department of Education(No.LJ212410163015).
文摘Oxaliplatin(OXA)has shown excellent potential in inducing immunogenic cell death and enhancing immunotherapy.However,the poor physicochemical properties of oxaliplatin make it difficult to achieve efficient synchronous delivery and synergistic immunotherapy with immune checkpoint inhibitors.To address this,we designed structurally optimized dual-wing butterfly prodrugs:oxaliplatin prodrug(POP)that enhances immunogenicity and reducible NLG919 homodimer(NSSN)that mitigates immunosuppression.Structural optimization of dual-wing butterfly prodrugs significantly enhanced lipid solubility compared to the parent drugs.It is worth noting that we assembled two dual-wing butterfly prodrugs,POP and NSSN,together into hybrid nanoassemblies(NAs),achieving advantages such as stable assembly,flexible dosing,and collaborative therapy.Dual-wing butterfly prodrug-driven hybrid NAs demonstrated enhanced antitumor efficacy and metastasis control in experimental models,with biocompatibility confirmed through biosafety evaluations.This work proposes a co-delivery strategy based on dual-wing butterfly prodrugs as a clinically translatable candidate.
基金funded by the Institute of Smart Energy,Huaiyin Institute of Technology,under Grant No.HIT-ISE-2024-07.
文摘In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111,and 22309134)the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,20ZR1460300,and 19DZ2271500)+2 种基金the China Postdoctoral Science Foundation(2022M712402),the Shanghai Rising-Star Program(23YF1449200)the Zhejiang Provincial Science and Technology Project(2022C01182)the Fundamental Research Funds for the Central Universities(2023-3-YB-07)。
文摘Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage.
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB28000000 and XDB0460000)the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2021ZD0302600)the National Key Research and Development Program of China(Grant No.2024YFA1409002)。
文摘The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金funded by the Inner Mongolia Nature Foundation Project,Project number:2023JQ04.
文摘Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.
基金funded by the National Natural Science Foundation of China(Grant No.06101213)the National Natural Science Foundation of China(Grant No.22105160).
文摘3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion.