Hybrid organic-inorganic perovskites(HOIPs)hold promise in the field of optoelectronics due to their excellent photoelectric conversion efficiency.However,the ion migration and hygroscopicity of these perovskite solar...Hybrid organic-inorganic perovskites(HOIPs)hold promise in the field of optoelectronics due to their excellent photoelectric conversion efficiency.However,the ion migration and hygroscopicity of these perovskite solar cells need to be addressed.Here,we presented semitransparent perovskite solar cells(ST-PSCs)using hole transport layer(HTL)combined with polyaniline(PANI)to stabilize HTL/perovskite interface,achieving a humidity durability(RH,50%-90%)for 596 days(14304 h)without encapsulation.Moreover,the decrease in hydrolysis products(LiF)showed the interaction between PANI with the addi-tives in HTL dramatically inhibited the water uptake and corrosion on MAPbI_(3),layer.The PANI modified samples had a higher I/Pb ratio and lower trap state density,which indicated the passivation effect of PANI on the uncoordinated Pb^(2+)and iodine vacancies.Subsequently,PANI successfully stabilized the interface and perovskite by inhibiting the formation of Pb^(0) and Au migration as long period storage.This work presented an interfacial design to develop HOiP in air with high humidity stability.展开更多
基金supported by the National Key R&D Program of China (Grant No.2023YFC3906103)National Natural Science Foundation of China(No.61774169)+1 种基金Natural Science Foundation of Hunan Province(No.2022JJ30757)Guangdong Science and Technology Planning Project (2018B030323010)
文摘Hybrid organic-inorganic perovskites(HOIPs)hold promise in the field of optoelectronics due to their excellent photoelectric conversion efficiency.However,the ion migration and hygroscopicity of these perovskite solar cells need to be addressed.Here,we presented semitransparent perovskite solar cells(ST-PSCs)using hole transport layer(HTL)combined with polyaniline(PANI)to stabilize HTL/perovskite interface,achieving a humidity durability(RH,50%-90%)for 596 days(14304 h)without encapsulation.Moreover,the decrease in hydrolysis products(LiF)showed the interaction between PANI with the addi-tives in HTL dramatically inhibited the water uptake and corrosion on MAPbI_(3),layer.The PANI modified samples had a higher I/Pb ratio and lower trap state density,which indicated the passivation effect of PANI on the uncoordinated Pb^(2+)and iodine vacancies.Subsequently,PANI successfully stabilized the interface and perovskite by inhibiting the formation of Pb^(0) and Au migration as long period storage.This work presented an interfacial design to develop HOiP in air with high humidity stability.