A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and part...A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg^(–1). Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.展开更多
It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) te...It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.展开更多
One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Compari...One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Comparisons of the retrieved profiles and ECMWF reanalysis were made to assess the results. The main conclusions are as follows.(1) The results have high spatial resolution and therefore can precisely represent the temperature and humidity distribution of the typhoon.(2) The retrieved temperature is low in the areas of low temperature and high in the areas of high temperature; similar patterns are observed for humidity. This means that systematic revision may be needed during routine application.(3) The results of the retrieved temperature and humidity profiles are generally accurate, which is quite important for typhoon monitoring.展开更多
The Korea Meteorological Administration (KMA) has processed the data from the advanced TOVS (ATOVS) onboard NOAA-16 satellite since May 2001. The operational production utilizes the AAPP (ATOVS and AVHRR Processing Pa...The Korea Meteorological Administration (KMA) has processed the data from the advanced TOVS (ATOVS) onboard NOAA-16 satellite since May 2001. The operational production utilizes the AAPP (ATOVS and AVHRR Processing Package) of EUMETSAT and IAPP (International ATOVS Processing Package) of the University of Wisconsin. For the initial guess profiles, the predicted fields (usually 6 to 12 hour forecasted fields) from the global aviation model of NOAA/NCEP are used. The average number of profiles retrieved from the ATOVS data is about 1,300 for each morning and afternoon orbit at about 18 and 06 UTC, respectively. The retrieved temperature and dew point temperatures are provided to forecasters in real time and used for initialization of prediction models. With the advanced microwave sensor (AMSU; Advanced Microwave Sounding Unit), accuracy of the ATOVS products is expected to be better than that of the TOVS products, especially in cloudy conditions. Indeed, the preliminary results from a validation study with the collocated radiosonde data during a 8-month period, from May to December 2001, for the East Asia region show an improved accuracy of the ATOVS products for cloudy skies versus the TOVS, especially for higher altitudes. The RMS (Root Mean Square) difference between the ATOVS products and radiosonde data is about 1.3°C for both clear and cloudy conditions, except for near the ground and at higher altitudes, at around 200 hPa. There is no significant temporal variation of the error statistics at all pressure levels. In case of the water vapor mixing ratio, the largest difference is shown at lower altitudes, while the accuracy is much better for the clear sky cases than the cloudy sky cases. The bias and RMSE at lower altitudes is about 0.557 g kg<SUP>−1</SUP> and 2.5 g kg<SUP>−1</SUP> and decrease significantly with increasing altitude.展开更多
The large dynamic range and high performance of temperature and humidity profile lidar made it a popular tool for monitoring the atmospheric environment.In this study,we carried out an accurate analysis of the key com...The large dynamic range and high performance of temperature and humidity profile lidar made it a popular tool for monitoring the atmospheric environment.In this study,we carried out an accurate analysis of the key components of the lidar system,including lasers,the emitting and receiving light paths,and photodetectors.We combined the validation of simulations with experimental testing,and then the applicability indicators and necessary conditions in accordance were suggested.For the frequency stability of the laser,when the wavelength shift is less than 0.15%,the measurement accuracy of the system can be guaranteed to be less than 5%.The degree of near-field signal distortion will be significantly impacted by the size of the geometric factor’s transition zone.The introduced measurement error is less than 2%when the deviation angle of the emission axis is less than 0.1 mrad.It has been tested that selecting a low-sensitivity detector can help to improve the sensitivity of temperature detection since this channel is sensitive to the detector’s nonlinearity.To enhance lidar’s detection capabilities and direct the lidar system design process,it is beneficial to analyze the precision of the key components.展开更多
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos...As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.展开更多
The sounding data of a multi-channel parallel ground-based microwave radiometer (MWR) in Fuzhou station in July and August in 2016 were compared with the sounding data of a radiosonde in the same position in the sam...The sounding data of a multi-channel parallel ground-based microwave radiometer (MWR) in Fuzhou station in July and August in 2016 were compared with the sounding data of a radiosonde in the same position in the same period. The results showed that the correlations between the two types of temperature or humidity detected by the microwave radiometer and the radiosonde were significant at 0.05 level, indicating that the overall changing trends of temperature or humidity detected by the two devices were similar. The temperature detected by the microwave radiometer and the radiosonde decreased with the increase of height. The difference between the changes in the height of the zero layer detected by the micro- wave radiometer and the radiosonde was not significant, and their trends were basically the same.展开更多
Temperature and relative humidity profiles derived from two China-made global positioning system(GPS) radiosondes(GPS-TK and CF-06-A) during the east tropical Indian Ocean(ETIO) experiment were compared with Vai...Temperature and relative humidity profiles derived from two China-made global positioning system(GPS) radiosondes(GPS-TK and CF-06-A) during the east tropical Indian Ocean(ETIO) experiment were compared with Vaisala RS92-SGP to assess the performances of China-made radiosondes over the tropical ocean.The results show that there have relative large biases in temperature observations between the GPSTK and the RS92-SGP in the low troposphere,with a warm bias of greater than 2 K in the day and a cooling bias of 0.6 K at night.The temperature differences of the CF-06-A were small in the troposphere both in daytime and nighttime,and became large peak-to-peak fluctuations in the stratosphere.The intercomparison of the relative humidity showed that the CF-06-A had large random errors due to the limitation of sensors and the lack of correction scheme,and the GPS-TK had large systematic biases in the low troposphere which might be related to the temperature impact.GPS height measurements are clearly suitable for China-made radiosonde systems operation.At night,the CF-06-A and the GPS-TK could provide virtual potential temperature and atmospheric boundary layer height measurements of suitable quality for both weather and climate research.As a result of the intercomparison experiment,major errors in the Chinamade radiosonde systems were well indentified and subsequently rectified to ensure improving accuracy for historical and future radiosondes.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant No.2018YFC1507302in part by the National Natural Science Foundation of China under Grant No.41975028。
文摘A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg^(–1). Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.
基金supported by funds from the National Key Research and Development Program Global Change and Mitigation Project [grant number 2017YFA0604004]the National Natural Science Foundation of China [grant numbers41675100,91737306 and U1811464]provided by the SCSIO under the project ‘Scientific investigation of the Eastern Indian Ocean in 2018’,funded by the NSFC(NORC2018-10)
文摘It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)
文摘One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Comparisons of the retrieved profiles and ECMWF reanalysis were made to assess the results. The main conclusions are as follows.(1) The results have high spatial resolution and therefore can precisely represent the temperature and humidity distribution of the typhoon.(2) The retrieved temperature is low in the areas of low temperature and high in the areas of high temperature; similar patterns are observed for humidity. This means that systematic revision may be needed during routine application.(3) The results of the retrieved temperature and humidity profiles are generally accurate, which is quite important for typhoon monitoring.
基金the project"Development of Monitoring andPrediction Technology for Severe Weather(Heavy Rainfall)over the Korean Peninsula"of the Korea MeteorologicalAdministration.
文摘The Korea Meteorological Administration (KMA) has processed the data from the advanced TOVS (ATOVS) onboard NOAA-16 satellite since May 2001. The operational production utilizes the AAPP (ATOVS and AVHRR Processing Package) of EUMETSAT and IAPP (International ATOVS Processing Package) of the University of Wisconsin. For the initial guess profiles, the predicted fields (usually 6 to 12 hour forecasted fields) from the global aviation model of NOAA/NCEP are used. The average number of profiles retrieved from the ATOVS data is about 1,300 for each morning and afternoon orbit at about 18 and 06 UTC, respectively. The retrieved temperature and dew point temperatures are provided to forecasters in real time and used for initialization of prediction models. With the advanced microwave sensor (AMSU; Advanced Microwave Sounding Unit), accuracy of the ATOVS products is expected to be better than that of the TOVS products, especially in cloudy conditions. Indeed, the preliminary results from a validation study with the collocated radiosonde data during a 8-month period, from May to December 2001, for the East Asia region show an improved accuracy of the ATOVS products for cloudy skies versus the TOVS, especially for higher altitudes. The RMS (Root Mean Square) difference between the ATOVS products and radiosonde data is about 1.3°C for both clear and cloudy conditions, except for near the ground and at higher altitudes, at around 200 hPa. There is no significant temporal variation of the error statistics at all pressure levels. In case of the water vapor mixing ratio, the largest difference is shown at lower altitudes, while the accuracy is much better for the clear sky cases than the cloudy sky cases. The bias and RMSE at lower altitudes is about 0.557 g kg<SUP>−1</SUP> and 2.5 g kg<SUP>−1</SUP> and decrease significantly with increasing altitude.
基金supported by the National Key R&D Program of China(Nos.2022YFC3700400 and 2022YFC3704000).
文摘The large dynamic range and high performance of temperature and humidity profile lidar made it a popular tool for monitoring the atmospheric environment.In this study,we carried out an accurate analysis of the key components of the lidar system,including lasers,the emitting and receiving light paths,and photodetectors.We combined the validation of simulations with experimental testing,and then the applicability indicators and necessary conditions in accordance were suggested.For the frequency stability of the laser,when the wavelength shift is less than 0.15%,the measurement accuracy of the system can be guaranteed to be less than 5%.The degree of near-field signal distortion will be significantly impacted by the size of the geometric factor’s transition zone.The introduced measurement error is less than 2%when the deviation angle of the emission axis is less than 0.1 mrad.It has been tested that selecting a low-sensitivity detector can help to improve the sensitivity of temperature detection since this channel is sensitive to the detector’s nonlinearity.To enhance lidar’s detection capabilities and direct the lidar system design process,it is beneficial to analyze the precision of the key components.
基金National Natural Science Foundation of China(41901297,41806209)Science and Technology Key Project of Henan Province(202102310017)+1 种基金Key Research Projects for the Universities of Henan Province(20A170013)China Postdoctoral Science Foundation(2021M693201)。
文摘As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.
文摘The sounding data of a multi-channel parallel ground-based microwave radiometer (MWR) in Fuzhou station in July and August in 2016 were compared with the sounding data of a radiosonde in the same position in the same period. The results showed that the correlations between the two types of temperature or humidity detected by the microwave radiometer and the radiosonde were significant at 0.05 level, indicating that the overall changing trends of temperature or humidity detected by the two devices were similar. The temperature detected by the microwave radiometer and the radiosonde decreased with the increase of height. The difference between the changes in the height of the zero layer detected by the micro- wave radiometer and the radiosonde was not significant, and their trends were basically the same.
基金The National Basic Research Program(973 Program)of China under contract Nos 2011CB403503 and 2011CB403504the National Natural Science Foundation of China under contract No.41276024+1 种基金the Major Program of the National Natural Science Foundation of China under contract No.91228202the National Foundation of the Indian Ocean Opening Voyage Project of China under contract Nos 41149903 and 41049908
文摘Temperature and relative humidity profiles derived from two China-made global positioning system(GPS) radiosondes(GPS-TK and CF-06-A) during the east tropical Indian Ocean(ETIO) experiment were compared with Vaisala RS92-SGP to assess the performances of China-made radiosondes over the tropical ocean.The results show that there have relative large biases in temperature observations between the GPSTK and the RS92-SGP in the low troposphere,with a warm bias of greater than 2 K in the day and a cooling bias of 0.6 K at night.The temperature differences of the CF-06-A were small in the troposphere both in daytime and nighttime,and became large peak-to-peak fluctuations in the stratosphere.The intercomparison of the relative humidity showed that the CF-06-A had large random errors due to the limitation of sensors and the lack of correction scheme,and the GPS-TK had large systematic biases in the low troposphere which might be related to the temperature impact.GPS height measurements are clearly suitable for China-made radiosonde systems operation.At night,the CF-06-A and the GPS-TK could provide virtual potential temperature and atmospheric boundary layer height measurements of suitable quality for both weather and climate research.As a result of the intercomparison experiment,major errors in the Chinamade radiosonde systems were well indentified and subsequently rectified to ensure improving accuracy for historical and future radiosondes.