In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,name...In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,namely1-(p-benzoate-(p-methylvinylbenzene)-indolino[2,3][60]fullerene(FPPS),was readily synthesized from commercially available building blocks in two steps.This FPPS was employed as an interfacial modifier on perovskite surfaces in inverted planar p-i-n PSCs.Owing to the fast interfacial charge extraction and efficient trap passivation,PSCs based on the cross-linked FPPS(C-FPPS)exhibited excellent performance.The PSCs had a top-performing power conversion efficiency(PCE)of 17.82%with negligible hysteresis,compared to the control devices without C-PFFS(16.99%).Moreover,the strong water resistance of the C-FPPS interfacial layer distinctly enhances the ambient stability of PSC devices,exhibiting a t80(the time required to reach 80%of the initial PCE)of 300 h under high-humidity conditions.This significantly surpasses the control devices,whose t80 was only 130 h.These results demonstrate that cross-linkable fullerene derivatives can be promising interfacial materials for designing high-efficiency,hysteresis-free,air-stable PSCs.展开更多
Weak water stability and lithium reactivity are two major stability issues of sulfide solid-state electrolytes(SSEs)for all-solid-state lithium metal batteries.Here,we report on nano-sized boron nitride(BN)-coated Li_...Weak water stability and lithium reactivity are two major stability issues of sulfide solid-state electrolytes(SSEs)for all-solid-state lithium metal batteries.Here,we report on nano-sized boron nitride(BN)-coated Li_(5.7)PS_(4.7)Cl_(1.3)(BN@LPSC1.3)sulfide SSE,which exhibits reduced H_(2)S emission and improved ionic conductivity retention after relative humidity 1.2%-1.5%ambient condition exposure.Furthermore,BN can partially react with lithium metal to create stable Li_(3)N,resulting in BN@LPSC1.3 showing reduced reactivity against lithium metal and a higher critical current density of 2.2mA/cm^(2).The Li/BN@LPSC/Li symmetrical battery also shows considerably greater stability for>2000 h at a current density of 0.1mA/cm^(2).Despite the high cathode mass loading of 13.38mg/cm^(2),the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/BN@LPSC1.3/Li all-solidstate lithium metal battery achieves 84.34%capacity retention even after 500 cycles at 0.1 C and room temperature(25℃).展开更多
To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adeq...To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMe TAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound(LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive(thioctic acid, TA) with spiro-OMe TAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMe TAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE(22.52%) with excellent device stability.展开更多
The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite de...The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%).展开更多
The severe interfacial charge recombination as well as the stability issues brought by the Li-TFSI still hinder the commercialization of high-performance perovskite solar cells(PSCs).Here,a polyoxometalates(POMs)-base...The severe interfacial charge recombination as well as the stability issues brought by the Li-TFSI still hinder the commercialization of high-performance perovskite solar cells(PSCs).Here,a polyoxometalates(POMs)-based complex,POM@ionic liquid(IL),is synthesized and applied as an effective additive that simultaneously enhances the performance and stability of PSCs.The interactions between POM@IL complex and Li-TFSI inhibit the aggregation of Li-TFSI.The synergistic oxidation of POM@IL complex and Li-TFSI towards 2,2,7,7-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene(Spiro-OMeTAD)effectively enhances the electrical properties of hole transport layer film and the photovoltaic performances of PSCs.The champion device modified with the POM@IL complex yields an excellent power conversion efficiency(PCE)of 22.73%.Moreover,the incorporation of POM@IL improves the humidity stability of PSCs.After storing under high humidity conditions(25℃,60%RH)for 1200 h,the POM@IL modified device retained a remarkable 81.2%of its initial PCE.This work provides new insight into constructing POMs-based materials for high-performance photovoltaic devices.展开更多
Due to the loss of organic amine cations and lead ions in the structure of the iodine-lead methylamine perovskite solar cell,there are a large number of defects within the film and the recombination loss caused by gra...Due to the loss of organic amine cations and lead ions in the structure of the iodine-lead methylamine perovskite solar cell,there are a large number of defects within the film and the recombination loss caused by grain boundaries,which seriously hinder the further improvement of power conversion efficiency and stability.Herein,a novel carbon nitride C_(3)N_(3) incorporated into the perovskite precursor solution is a multifunctional strategy,which not only increases the light absorption strength,grain size,and hydrophobicity of the perovskite film,but also effectively passivates the bulk and interfacial defects of perovskite and verified by the first-principles density functional theory calculations.As a result,the efficiency and stability of perovskite solar cells are improved.The device with 0.075 mg mL^(-1) C_(3)N_(3) additive delivers a champion power conversion efficiency of 19.91%with suppressed hysteresis,which is significantly higher than the 18.16% of the control device.In addition,the open-circuit voltage of the modified device with the maximum addition as high as 1.137 V is 90.96% of the Shockley–Queisser limit(1.25 V).Moreover,the power conversion efficiency of the modified device without encapsulation can maintain nearly 90% of its initial value after being stored at 25℃ and 60% relative humidity for 500 h.This work provides a new idea for developing additives to improve the power conversion efficiency and stability of perovskite solar cells.展开更多
基金the National Natural Science Foundation of China(Nos.21721001,51572231 and 51502252)the Natural Science Foundation of Fujian Province of China(No.2016J01264)。
文摘In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,namely1-(p-benzoate-(p-methylvinylbenzene)-indolino[2,3][60]fullerene(FPPS),was readily synthesized from commercially available building blocks in two steps.This FPPS was employed as an interfacial modifier on perovskite surfaces in inverted planar p-i-n PSCs.Owing to the fast interfacial charge extraction and efficient trap passivation,PSCs based on the cross-linked FPPS(C-FPPS)exhibited excellent performance.The PSCs had a top-performing power conversion efficiency(PCE)of 17.82%with negligible hysteresis,compared to the control devices without C-PFFS(16.99%).Moreover,the strong water resistance of the C-FPPS interfacial layer distinctly enhances the ambient stability of PSC devices,exhibiting a t80(the time required to reach 80%of the initial PCE)of 300 h under high-humidity conditions.This significantly surpasses the control devices,whose t80 was only 130 h.These results demonstrate that cross-linkable fullerene derivatives can be promising interfacial materials for designing high-efficiency,hysteresis-free,air-stable PSCs.
基金financial support from the Science and Technology Project of Shenzhen(Nos.JCYJ20210324094206019 and JCYJ20210324094000001).
文摘Weak water stability and lithium reactivity are two major stability issues of sulfide solid-state electrolytes(SSEs)for all-solid-state lithium metal batteries.Here,we report on nano-sized boron nitride(BN)-coated Li_(5.7)PS_(4.7)Cl_(1.3)(BN@LPSC1.3)sulfide SSE,which exhibits reduced H_(2)S emission and improved ionic conductivity retention after relative humidity 1.2%-1.5%ambient condition exposure.Furthermore,BN can partially react with lithium metal to create stable Li_(3)N,resulting in BN@LPSC1.3 showing reduced reactivity against lithium metal and a higher critical current density of 2.2mA/cm^(2).The Li/BN@LPSC/Li symmetrical battery also shows considerably greater stability for>2000 h at a current density of 0.1mA/cm^(2).Despite the high cathode mass loading of 13.38mg/cm^(2),the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/BN@LPSC1.3/Li all-solidstate lithium metal battery achieves 84.34%capacity retention even after 500 cycles at 0.1 C and room temperature(25℃).
基金supported by the National Natural Science Foundation of China (21975028, U21A20172 and 22011540377)the Special Key Projects (2022-JCJQ-ZD-224-12)。
文摘To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMe TAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound(LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive(thioctic acid, TA) with spiro-OMe TAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMe TAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE(22.52%) with excellent device stability.
基金supported by the National Natural Science Foundation of China(22179050,21875089,51973080)。
文摘The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%).
基金supported by the National Natural Science Foundation of China(Nos.22072034 and 22001050)the China Postdoctoral Science Foundation(Nos.2020T130147,2020M681084,and 2022M710949)+1 种基金the Postdoctoral Foundation of Heilongjiang Province(Nos.LBH-Z19059,and LBH-Z22106)the Natural Science Foundation of Heilongjiang Youth Fund(No.YQ2021B002)。
文摘The severe interfacial charge recombination as well as the stability issues brought by the Li-TFSI still hinder the commercialization of high-performance perovskite solar cells(PSCs).Here,a polyoxometalates(POMs)-based complex,POM@ionic liquid(IL),is synthesized and applied as an effective additive that simultaneously enhances the performance and stability of PSCs.The interactions between POM@IL complex and Li-TFSI inhibit the aggregation of Li-TFSI.The synergistic oxidation of POM@IL complex and Li-TFSI towards 2,2,7,7-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene(Spiro-OMeTAD)effectively enhances the electrical properties of hole transport layer film and the photovoltaic performances of PSCs.The champion device modified with the POM@IL complex yields an excellent power conversion efficiency(PCE)of 22.73%.Moreover,the incorporation of POM@IL improves the humidity stability of PSCs.After storing under high humidity conditions(25℃,60%RH)for 1200 h,the POM@IL modified device retained a remarkable 81.2%of its initial PCE.This work provides new insight into constructing POMs-based materials for high-performance photovoltaic devices.
基金This work was financially supported by National Natural Science Foundation of China(52002121,62004064,21873027,and 21905219)the Key Program for Inter-governmental S&T Innovation Cooperation Projects of National Key R&D Pro-gram of China(2019YFE0107100)+1 种基金Natural Science Foundation of Hubei Province(2020CFA091)Overseas Expertise Introduction Center for Discipline Innova-tion(D18025).
文摘Due to the loss of organic amine cations and lead ions in the structure of the iodine-lead methylamine perovskite solar cell,there are a large number of defects within the film and the recombination loss caused by grain boundaries,which seriously hinder the further improvement of power conversion efficiency and stability.Herein,a novel carbon nitride C_(3)N_(3) incorporated into the perovskite precursor solution is a multifunctional strategy,which not only increases the light absorption strength,grain size,and hydrophobicity of the perovskite film,but also effectively passivates the bulk and interfacial defects of perovskite and verified by the first-principles density functional theory calculations.As a result,the efficiency and stability of perovskite solar cells are improved.The device with 0.075 mg mL^(-1) C_(3)N_(3) additive delivers a champion power conversion efficiency of 19.91%with suppressed hysteresis,which is significantly higher than the 18.16% of the control device.In addition,the open-circuit voltage of the modified device with the maximum addition as high as 1.137 V is 90.96% of the Shockley–Queisser limit(1.25 V).Moreover,the power conversion efficiency of the modified device without encapsulation can maintain nearly 90% of its initial value after being stored at 25℃ and 60% relative humidity for 500 h.This work provides a new idea for developing additives to improve the power conversion efficiency and stability of perovskite solar cells.