Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of th...Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition.展开更多
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte...Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.展开更多
The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising appr...The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising approach. Therefore, a pot experiment was conducted to determine the efficacy of exogenous humic acid on wheat under water deficit stress via a completely randomized design (CRD) with three replications. The impacts of four growing conditions, i.e., well water (65% field capacity), water deficit stress (35% field capacity), soil application of humic acid (44 mg kg−1 soil) under water deficit stress and foliar feeding of humic acid (200 ppm) under water deficit stress, were investigated on two wheat varieties (BWMRI Gom 1 and BWMRI Gom 3). The results demonstrated that water deficit stress substantially decreased the studied morphological and physiological traits, yield components and yield, in both genotypes, with the exception of the proline content of flag leaves. Compared with soil application, foliar feeding of humic acid promoted the ability of wheat to overcome stress conditions better. In the present study, humic acid as a soil application increased the grain yield by 9.13% and 13.86% and the biological yield by 9.94% and 5.19%, whereas foliar treatment increased the grain output by 24.76% and 25.19% and the biological yield by 19.23% and 6.50% in BWMRI Gom 1 and BWMRI Gom 3, respectively, under water deficit stress. Therefore, exogenous foliar humic acid treatment was more effective than soil application in alleviating the effects of drought stress on wheat.展开更多
In this study,synthetic wastewater containing 110μg/L arsenate(As(V)),0-20 mg/L fulvic acid(FA),and 0-12.3 mg/L phosphate was treated with 3 mg/L Fe3+.The mechanisms of FA and phosphate effects on As(V)removal by fer...In this study,synthetic wastewater containing 110μg/L arsenate(As(V)),0-20 mg/L fulvic acid(FA),and 0-12.3 mg/L phosphate was treated with 3 mg/L Fe3+.The mechanisms of FA and phosphate effects on As(V)removal by ferric chloride were determined using 0.22-10μm pore-size filtration,Zetasizer analysis,and in situ flow through cell ATR-FTIR.The results showed that up to 20mg/L FA had almost no effect on the solubility of ferric hydroxide precipitates and adsorption of As(V)by the precipitates.When FA concentration increased from 0 to 20 mg/L,the adsorption of FA led to higher negative zeta potential of the precipitates and the strong electrostatic repulsion between the precipitates decreased the particle size of ferric hydroxide flocs fromlarger than 10μmto smaller than 1μm.In the presence of 5-20 mg/L FA,46%-63%As(V)was adsorbed onto the flocs with particle size in the range of 0.45-1μm.On the other hand,phosphate did not affect the size of ferric hydroxide flocs and significantly increased the dissolved As(V)concentration because it competed with As(V)for adsorption sites on ferric hydroxide precipitates.The addition of 5mg/L cationic organic flocculant significantly reduced the effect of FA on As(V)removal,but did not reduce the effect of phosphate on As(V)removal.The findings of this study will help develop effective arsenic treatment techniques and predict the mobility of arsenic in the environment.展开更多
Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targ...Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.展开更多
Food waste,owing to its high organic content and moisture,offers a more scientifically sound resource utilization method compared to traditional treatment processes.This study presents a method to convert food waste i...Food waste,owing to its high organic content and moisture,offers a more scientifically sound resource utilization method compared to traditional treatment processes.This study presents a method to convert food waste into nitrogen-doped,modified hydrogel biochar modified food waste hydrogel biochar and investigates its effectiveness in adsorbing humic acid(HA).The modified biochar demonstrates superior adsorption capacity for HA compared to unmodified biochar.The adsorption follows the Langmuir isotherm model(R2=0.999),achieving a maximum adsorp-tion capacity of 49.5 mg/g with RL=0.0013-0.0051(0<RL<1).Furthermore,the adsorption process conforms to a pseudo-first-order model.The mechanism underlying HA adsorption involves the successful modification of food waste hydrogel biochar by 3-Aminopropyltriethoxysilane(APTES).This modification forms Si―R―NH_(3)^(+) on the biochar surface,which interacts with the COOH―groups in HA through hydrogen bonding and coordination bonds.Some unmodified APTES directly adsorbs onto the biochar surface,undergoing condensation and self-assembly to form ladder-like oligomeric siloxane polymers that enhance HA adsorption.展开更多
Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence...Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.展开更多
Increasing soil phosphorus(P)availability and plant P uptake are potential approaches to alleviate low P stress in plants and mitigate P resource shortages.Application of fulvic acid(FA)in soil is observed to increase...Increasing soil phosphorus(P)availability and plant P uptake are potential approaches to alleviate low P stress in plants and mitigate P resource shortages.Application of fulvic acid(FA)in soil is observed to increase plant growth and P uptake.However,the biological mechanisms underlying these effects remain largely unknown.In this study,based on a three-year field experiment,multi-omics analyses were performed to reveal the effects of FA on rice growth and P uptake,the expression of P transporter genes,root exudates,and rhizosphere bacterial communities in a P-deficient soil.The results showed that FA application significantly promoted rice growth and P absorption under P deficiency,in association with the upregulation of P transporter genes expression and increased rhizosphere P mobilization.FA increased the transformation of non-labile to labile P in the rhizosphere by increasing the secretion of Pdissolving exudates and changing a rhizosphere bacterial community with high P-mobilization capacity,and the variations in the rhizosphere bacterial community were coupled with those of the root exudates,especially glutamylproline,tryptophanamide,5-chloro-2′-deoxyuridine,L-menthyl(R,S)-3-hydroxybutyrate,and 2,7-diamino-7-iminoheptanoic acid.These findings reveal the multiple positive effects of FA on rice P uptake and indicate the potential utilization of FA in increasing P utilization in rice production.展开更多
This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting t...This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge.展开更多
Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate w...Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate water shortage in agriculture and the application of lignite humic acid reduces the adverse effects of soil salinization.However,further research is needed to investigate the effects of different application rates of lignite humic acid and humic acid-based combined amendment on soil physicochemical properties,nutrient contents,and crop yield in saline-sodic farmlands under shallow-buried drip irrigation.A two-year field experiment was conducted with control without any amendment(CK),three treatments amended with 3 t/ha(H1),6 t/ha(H2),and 12 t/ha(H3)lignite humic acid,and three application rates with 15 t/ha(T1),22.5 t/ha(T2),and 30 t/ha(T3)lignite humic acid-based combined amendment in 2021 and2022.The results showed that H3 reduced soil bulk density,p H,electrical conductivity,and total alkalinity,while increasing the contents of soil organic matter,total nitrogen,and available potassium in the two-year experiment.Moreover,the maize yield in H3 increased by an average of 35.5%.T2 decreased soil bulk density,p H,total alkalinity,and increased maize yield by 16.2%,compared to the first year.These results suggest that T2 consistently improved both soil quality and crop yield.Correlation analyses showed that lignite humic acid and its complexes promote maize growth and increase yield by increasing soil organic matter and total nitrogen while reducing soil salinity and total alkalinity.Based on the comprehensive analysis of the field data and the results of the comprehensive evaluation of soil quality,it was determined that the appropriate improvement measures for saline-sodic farmlands under shallow-buried drip irrigation are the application of 12 t/ha of lignite humic acid and 22.5 t/ha of lignite humic acid-based combined amendment.This study demonstrates the effectiveness of lignite humic acid and its combined amendment in mitigating the constraints of saline-sodic farmlands and enhancing crop yields,providing a sustainable solution for improving saline-sodic farmlands in the West Liaohe Plain.展开更多
This article focused on the influences of fulvic acid and humic acid on aluminum speciation in drinking water. Factors including the concentration of residual chlorine and pH value had been concerned. Aluminum species...This article focused on the influences of fulvic acid and humic acid on aluminum speciation in drinking water. Factors including the concentration of residual chlorine and pH value had been concerned. Aluminum species investigated in the experiments included inorganic mononuclear, organic mononuclear, mononuclear, polymer, soluble, and suspended forms. It was found that the effects of fulvic acid and humic acid on aluminum speciation depended mainly on their molecular weight. Fulvic acid with molecular weight less than 5000 Dalton had little influence on aluminum speciation; while fulvic acid with molecular weight larger than 5000 Dalton and humic acid would increase the concentration of soluble aluminum significantly even at concentration below 0.5 mg/L (calculated as TOC). Aluminum species, in the present of fulvic acid with molecular weight larger than 5000 Dalton and humic acid, were more stable than that in the present of fluvic acid with molecular mass less than 5000 Dalton, and varied little with reaction time. Within pH range 6.5-7.5, soluble aluminum increased notably in water with organic matter. As the concentration of residual chlorine increased, the effects of fulvic acid and humic acid became weak. The reactions between humic acid, fulvic acid with large molecular weight, and aluminum were considered to be a multi-dentate coordination process. With the consideration of aluminum bioavailability, reducing the concentration of fulvic acid and humic acid and keeping the pH value among 6.5-7.5 were recommended during drinking water treatment.展开更多
Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury(Hg) in paddy fields are s...Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury(Hg) in paddy fields are still unclear. Here, fulvic acid(FA) and humic acid(HA) extracted from composted straw(CS), composted cow dung(CCD), peat soil(PM) and lignite coal(LC) were used to understand their effects on the methylation and bioaccumulation of Hg in paddy soil by pot experiments. Amendments of both FA and HA largely increased the abundance of Hg-methylating microbes and low-molecular-weight organic matters(e.g, cysteine) in paddy soil. They were also found to change the aromaticity, molecular size and Chromophoric DOM concentration of DOM, and resulted in heterogeneous effects on migration and transformation of Hg. All the FA-amended treatments increased the mobility and methylation of Hg in soil and its absorption in roots. Nevertheless, FA from different sources have heterogeneous effects on transport of Hg between rice tissues. FA-CCD and FA-PM promoted the translocation of Me Hg from roots to rice grains by 32.95% and 41.12%, while FA-CS and FA-LC significantly inhibited the translocation of inorganic Hg(IHg) by 52.65% and 66.06% and of Me Hg by 46.65% and 36.23%, respectively. In contrast, all HA-amended treatments reduced the mobility of soil Hg, but promoted Hg methylation in soil. Among which, HA-CCD and HA-PM promoted the translocation of Me Hg in rice tissues by 88.95% and 64.10%, while its accumulation in rice grains by 28.43% and 28.69%, respectively. In general, the application of some FA and HA as organic modifiers to reduce Hg bioaccumulation in rice is not feasible.展开更多
The formation constants of Co ̄(2+), Ni ̄(2+), Cu ̄(2+) and Zn ̄(2+) complexes with humic acid (HA) and fulvicacid (FA) in red soil were determined by the potentiometric titration method. The constants as a functionof...The formation constants of Co ̄(2+), Ni ̄(2+), Cu ̄(2+) and Zn ̄(2+) complexes with humic acid (HA) and fulvicacid (FA) in red soil were determined by the potentiometric titration method. The constants as a functionof composition of the complexation solutions were obtained by two graphical approaches respectively Theformation constants decreased with increasing concentration of metal in the solution. The results provideunambiguous evidence for the heterogeneity of the function groups of humic substances. The formationconstants of FA were much smaller than those of HA, and the formation constants of Cu ̄(2+) were muchgreater than those of Co ̄(2+) , Ni ̄(2+) and Zn ̄(2+) . The potentiometric titration method for determining formationconstants are also discussed in the article.展开更多
Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat th...Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat the experimental data.The affinity spectrum model technique could“magnify” the heterogeneity of the proton binding equilibria.so it was useful for comparing and studying the characteristics of humic substances with similar properties.According to the affinity spectra,we also found that the direction of the titration could affect the properties of the equilibria of FA from the weathered coal,and the acidic functional groups contained in FA from the weathered coal were larger in quantity than those contained in HA and FA from the dark loessial soil.展开更多
Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degradin...Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degrading bacteria strain was isolated from S_6.According to 16S rDNA gene sequence and biochemical characteristics,the isolated strain was identified and named Nitratireductor aquimarinus D_(1).Fulvic acid(FA),as a widely existing photosensitizer involved in MC photodegradation,coexists with MC-degrading bacteria in natural water.The synergistic effects of N.aquimarinus D_(1) and FA on MC degradation were evaluated via comparing the degradation rate of MC induced by N.aquimarinus D_(1) and FA alone and in combination under natural light conditions.Compared with the control group,the supplementation of N.aquimarinus D_(1) and FA alone or in combination could significantly increase the degradation rate of MC(P<0.05).In the first 36 h,the degradation effect of FA on MC was better than that of N.aquimarinus D_(1),but the degradation effect was opposite at 48 h.N.aquimarinus D_(1) and FA did not show synergistic effect on MC degradation until 48 h.In the application of N.aquimarinus and FA to degrade MC in aquaculture pond,there might be a time-lag effect in the synergistic degradation.展开更多
This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal eff...This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal efficiency(FRE)decreased from 90.22 to 23.11%when FA concentrations in the reactor were increased from 0 to 162.30 mg/L,and that molecular size,degree of aromatization and humification of the effluent FA macromolecules all increased after treatment.Microbial population analysis indicated that the proliferation of the Comamonas,OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations(<50.59 mg/L),promoting the degradation and removal of macromolecular FA.In addition,the sustained increase in external FA may decrease the abundance of above functional microorganisms,resulting in a rapid drop in FRE.Furthermore,from the genetic perspective,the elevated FA levels restricted carbohydrate(ko00620,ko00010 and ko00020)and nitrogen(HAO,AMO,NIR and NOR)metabolism-related pathways,thereby impeding FA removal and total nitrogen loss associated with N_(2)O emissions.展开更多
[Objectives]To investigate the effects of three foliar fertilizers on photosynthetic characteristics,fruit quality and yield of hawthorn.[Methods]Taking hawthorn foliar fertilization as the reference,the photosyntheti...[Objectives]To investigate the effects of three foliar fertilizers on photosynthetic characteristics,fruit quality and yield of hawthorn.[Methods]Taking hawthorn foliar fertilization as the reference,the photosynthetic rate,transpiration rate,intercellular CO 2 concentration,stomatal conductance and single fruit weight of hawthorn leaves were measured under different concentrations of foliar fertilizer.[Results]The results showed that the photosynthetic rate,transpiration rate and stomatal conductance of hawthorn leaves increased significantly,while the intercellular CO 2 concentration decreased.Specifically,the fish protein peptide foliar fertilizer performed best,with net photosynthetic rate and transpiration rate increased by 57.22%and 57.51%,respectively.All the three foliar fertilizers significantly reduced the intercellular CO 2 concentration.In addition,fertilization significantly increased the single fruit weight of hawthorn,and the effect of fermented fulvic acid foliar fertilizer was the most significant,with the highest growth rate of 68.49%.[Conclusions]Spraying foliar fertilizer significantly increased the content of Vc,titratable acid,anthocyanin and soluble solids of hawthorn fruit,among which fermented fulvic acid foliar fertilizer had the optimal effect.展开更多
Humic acid(HA)is a typical refractory organicmatter,so it is of great significance to investigate its effect on the performance of Anammox granular sludge.When the dosage ofHA≤50 mg/L,HA promotes the total nitrogen r...Humic acid(HA)is a typical refractory organicmatter,so it is of great significance to investigate its effect on the performance of Anammox granular sludge.When the dosage ofHA≤50 mg/L,HA promotes the total nitrogen removal rate(NRR)to 1.45 kg/(m^(3)·day).When HA was between 50 and 100 mg/L,the NRR of Anammox was stable.At this time,the adsorption of HA causes the sludge to gradually turn fromred to brown,but the activities of heme and enzymes showed that its capacitywas not affected.When HA levels reached 250 mg/L,the NRR dropped to 0.11 kg/(m^(3)·day).Moderate HA levels promoted the release of extracellular polymeric substance(EPS),but excessive HA levels lead to a decrease in EPS concentrations.HA inhibited Anammox activity,which indirectly hindered the transmission of substrate and accumulated substrate toxicity.Although HA promoted the increase of heterotrophicmicrobial abundance in Anammox system,the microbial diversity decreased gradually.With the increase of HA concentration,the abundance of Candidatus_Brocadia,the main functional microorganism of Anammox system,decreased gradually,while the abundance of Candidatus_Kuenenia increased gradually.展开更多
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
文摘Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition.
基金supported by the Russian Science Foundation(23-29-00830).
文摘Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.
基金funded byDepartment of Crop Physiology and Ecology,HajeeMohammad Danesh Science and Technology University,Dinajpur 5200 Bangladesh and Taif University,Saudi Arabia,Project No.TU-DSPP-2024-07.
文摘The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising approach. Therefore, a pot experiment was conducted to determine the efficacy of exogenous humic acid on wheat under water deficit stress via a completely randomized design (CRD) with three replications. The impacts of four growing conditions, i.e., well water (65% field capacity), water deficit stress (35% field capacity), soil application of humic acid (44 mg kg−1 soil) under water deficit stress and foliar feeding of humic acid (200 ppm) under water deficit stress, were investigated on two wheat varieties (BWMRI Gom 1 and BWMRI Gom 3). The results demonstrated that water deficit stress substantially decreased the studied morphological and physiological traits, yield components and yield, in both genotypes, with the exception of the proline content of flag leaves. Compared with soil application, foliar feeding of humic acid promoted the ability of wheat to overcome stress conditions better. In the present study, humic acid as a soil application increased the grain yield by 9.13% and 13.86% and the biological yield by 9.94% and 5.19%, whereas foliar treatment increased the grain output by 24.76% and 25.19% and the biological yield by 19.23% and 6.50% in BWMRI Gom 1 and BWMRI Gom 3, respectively, under water deficit stress. Therefore, exogenous foliar humic acid treatment was more effective than soil application in alleviating the effects of drought stress on wheat.
基金financially supported by the New Jersey Department of Environmental ProtectionUS EPA。
文摘In this study,synthetic wastewater containing 110μg/L arsenate(As(V)),0-20 mg/L fulvic acid(FA),and 0-12.3 mg/L phosphate was treated with 3 mg/L Fe3+.The mechanisms of FA and phosphate effects on As(V)removal by ferric chloride were determined using 0.22-10μm pore-size filtration,Zetasizer analysis,and in situ flow through cell ATR-FTIR.The results showed that up to 20mg/L FA had almost no effect on the solubility of ferric hydroxide precipitates and adsorption of As(V)by the precipitates.When FA concentration increased from 0 to 20 mg/L,the adsorption of FA led to higher negative zeta potential of the precipitates and the strong electrostatic repulsion between the precipitates decreased the particle size of ferric hydroxide flocs fromlarger than 10μmto smaller than 1μm.In the presence of 5-20 mg/L FA,46%-63%As(V)was adsorbed onto the flocs with particle size in the range of 0.45-1μm.On the other hand,phosphate did not affect the size of ferric hydroxide flocs and significantly increased the dissolved As(V)concentration because it competed with As(V)for adsorption sites on ferric hydroxide precipitates.The addition of 5mg/L cationic organic flocculant significantly reduced the effect of FA on As(V)removal,but did not reduce the effect of phosphate on As(V)removal.The findings of this study will help develop effective arsenic treatment techniques and predict the mobility of arsenic in the environment.
基金supported by the National Natural Science Foundation of China(No.52200049)the China Postdoctoral Science Foundation(No.2022TQ0089)the Heilongjiang Province Postdoctoral Science Foundation(No.LBHZ22181).
文摘Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.
基金The National Natural Science Foundation of China(No.52470216)the Natural Science Foundation of Jiangsu Province(No.BK20211175).
文摘Food waste,owing to its high organic content and moisture,offers a more scientifically sound resource utilization method compared to traditional treatment processes.This study presents a method to convert food waste into nitrogen-doped,modified hydrogel biochar modified food waste hydrogel biochar and investigates its effectiveness in adsorbing humic acid(HA).The modified biochar demonstrates superior adsorption capacity for HA compared to unmodified biochar.The adsorption follows the Langmuir isotherm model(R2=0.999),achieving a maximum adsorp-tion capacity of 49.5 mg/g with RL=0.0013-0.0051(0<RL<1).Furthermore,the adsorption process conforms to a pseudo-first-order model.The mechanism underlying HA adsorption involves the successful modification of food waste hydrogel biochar by 3-Aminopropyltriethoxysilane(APTES).This modification forms Si―R―NH_(3)^(+) on the biochar surface,which interacts with the COOH―groups in HA through hydrogen bonding and coordination bonds.Some unmodified APTES directly adsorbs onto the biochar surface,undergoing condensation and self-assembly to form ladder-like oligomeric siloxane polymers that enhance HA adsorption.
基金supported by the National Key R&D Program of China(No.2022YFC3701102)the National Natural Science Foundation of China(Nos.22376029,22176038,91744205 and 21777025)the Natural Science Foundation of Shanghai City(No.22ZR1404700).
文摘Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.
基金supported by the Higher Education Scientific Research Project of the Anhui Province(Natural Sciences)(2023AH051039)Anhui Provincial Natural Resources Science and Technology Project(2023-K-4)+1 种基金the National Key Research&Development Program of China(2023YFD1902300)Anhui Provincial Natural Science Foundation(2108085QC123).
文摘Increasing soil phosphorus(P)availability and plant P uptake are potential approaches to alleviate low P stress in plants and mitigate P resource shortages.Application of fulvic acid(FA)in soil is observed to increase plant growth and P uptake.However,the biological mechanisms underlying these effects remain largely unknown.In this study,based on a three-year field experiment,multi-omics analyses were performed to reveal the effects of FA on rice growth and P uptake,the expression of P transporter genes,root exudates,and rhizosphere bacterial communities in a P-deficient soil.The results showed that FA application significantly promoted rice growth and P absorption under P deficiency,in association with the upregulation of P transporter genes expression and increased rhizosphere P mobilization.FA increased the transformation of non-labile to labile P in the rhizosphere by increasing the secretion of Pdissolving exudates and changing a rhizosphere bacterial community with high P-mobilization capacity,and the variations in the rhizosphere bacterial community were coupled with those of the root exudates,especially glutamylproline,tryptophanamide,5-chloro-2′-deoxyuridine,L-menthyl(R,S)-3-hydroxybutyrate,and 2,7-diamino-7-iminoheptanoic acid.These findings reveal the multiple positive effects of FA on rice P uptake and indicate the potential utilization of FA in increasing P utilization in rice production.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant No.51972209).
文摘This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge.
基金Under the auspices of the National Key Research and Development Program of China(No.2022YFD1500501)the Innovation Team Project of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.2023CXTD02)+2 种基金the National Natural Science Foundation of China(No.41971066)the Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)the High Tech Fund Project of S&T Cooperation between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate water shortage in agriculture and the application of lignite humic acid reduces the adverse effects of soil salinization.However,further research is needed to investigate the effects of different application rates of lignite humic acid and humic acid-based combined amendment on soil physicochemical properties,nutrient contents,and crop yield in saline-sodic farmlands under shallow-buried drip irrigation.A two-year field experiment was conducted with control without any amendment(CK),three treatments amended with 3 t/ha(H1),6 t/ha(H2),and 12 t/ha(H3)lignite humic acid,and three application rates with 15 t/ha(T1),22.5 t/ha(T2),and 30 t/ha(T3)lignite humic acid-based combined amendment in 2021 and2022.The results showed that H3 reduced soil bulk density,p H,electrical conductivity,and total alkalinity,while increasing the contents of soil organic matter,total nitrogen,and available potassium in the two-year experiment.Moreover,the maize yield in H3 increased by an average of 35.5%.T2 decreased soil bulk density,p H,total alkalinity,and increased maize yield by 16.2%,compared to the first year.These results suggest that T2 consistently improved both soil quality and crop yield.Correlation analyses showed that lignite humic acid and its complexes promote maize growth and increase yield by increasing soil organic matter and total nitrogen while reducing soil salinity and total alkalinity.Based on the comprehensive analysis of the field data and the results of the comprehensive evaluation of soil quality,it was determined that the appropriate improvement measures for saline-sodic farmlands under shallow-buried drip irrigation are the application of 12 t/ha of lignite humic acid and 22.5 t/ha of lignite humic acid-based combined amendment.This study demonstrates the effectiveness of lignite humic acid and its combined amendment in mitigating the constraints of saline-sodic farmlands and enhancing crop yields,providing a sustainable solution for improving saline-sodic farmlands in the West Liaohe Plain.
基金supported by the National Natural Science Foundation of China (No.50838005)the Changjiang Scholars and Innovative Research Team in University(No.IRT0853)the American Aluminum Foundation
文摘This article focused on the influences of fulvic acid and humic acid on aluminum speciation in drinking water. Factors including the concentration of residual chlorine and pH value had been concerned. Aluminum species investigated in the experiments included inorganic mononuclear, organic mononuclear, mononuclear, polymer, soluble, and suspended forms. It was found that the effects of fulvic acid and humic acid on aluminum speciation depended mainly on their molecular weight. Fulvic acid with molecular weight less than 5000 Dalton had little influence on aluminum speciation; while fulvic acid with molecular weight larger than 5000 Dalton and humic acid would increase the concentration of soluble aluminum significantly even at concentration below 0.5 mg/L (calculated as TOC). Aluminum species, in the present of fulvic acid with molecular weight larger than 5000 Dalton and humic acid, were more stable than that in the present of fluvic acid with molecular mass less than 5000 Dalton, and varied little with reaction time. Within pH range 6.5-7.5, soluble aluminum increased notably in water with organic matter. As the concentration of residual chlorine increased, the effects of fulvic acid and humic acid became weak. The reactions between humic acid, fulvic acid with large molecular weight, and aluminum were considered to be a multi-dentate coordination process. With the consideration of aluminum bioavailability, reducing the concentration of fulvic acid and humic acid and keeping the pH value among 6.5-7.5 were recommended during drinking water treatment.
基金supported by Science and Technology Project of Guizhou Province (Nos. QKHZC[2020]4Y031QKHJC[2020]1Y187 )+2 种基金the Natural Science Foundation of China (Nos. 4176301742007305 )the Program Foundation of Institute for Scientific Research of Karst Area of NSFC-GZGOV (No. U1612442 )。
文摘Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury(Hg) in paddy fields are still unclear. Here, fulvic acid(FA) and humic acid(HA) extracted from composted straw(CS), composted cow dung(CCD), peat soil(PM) and lignite coal(LC) were used to understand their effects on the methylation and bioaccumulation of Hg in paddy soil by pot experiments. Amendments of both FA and HA largely increased the abundance of Hg-methylating microbes and low-molecular-weight organic matters(e.g, cysteine) in paddy soil. They were also found to change the aromaticity, molecular size and Chromophoric DOM concentration of DOM, and resulted in heterogeneous effects on migration and transformation of Hg. All the FA-amended treatments increased the mobility and methylation of Hg in soil and its absorption in roots. Nevertheless, FA from different sources have heterogeneous effects on transport of Hg between rice tissues. FA-CCD and FA-PM promoted the translocation of Me Hg from roots to rice grains by 32.95% and 41.12%, while FA-CS and FA-LC significantly inhibited the translocation of inorganic Hg(IHg) by 52.65% and 66.06% and of Me Hg by 46.65% and 36.23%, respectively. In contrast, all HA-amended treatments reduced the mobility of soil Hg, but promoted Hg methylation in soil. Among which, HA-CCD and HA-PM promoted the translocation of Me Hg in rice tissues by 88.95% and 64.10%, while its accumulation in rice grains by 28.43% and 28.69%, respectively. In general, the application of some FA and HA as organic modifiers to reduce Hg bioaccumulation in rice is not feasible.
文摘The formation constants of Co ̄(2+), Ni ̄(2+), Cu ̄(2+) and Zn ̄(2+) complexes with humic acid (HA) and fulvicacid (FA) in red soil were determined by the potentiometric titration method. The constants as a functionof composition of the complexation solutions were obtained by two graphical approaches respectively Theformation constants decreased with increasing concentration of metal in the solution. The results provideunambiguous evidence for the heterogeneity of the function groups of humic substances. The formationconstants of FA were much smaller than those of HA, and the formation constants of Cu ̄(2+) were muchgreater than those of Co ̄(2+) , Ni ̄(2+) and Zn ̄(2+) . The potentiometric titration method for determining formationconstants are also discussed in the article.
文摘Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat the experimental data.The affinity spectrum model technique could“magnify” the heterogeneity of the proton binding equilibria.so it was useful for comparing and studying the characteristics of humic substances with similar properties.According to the affinity spectra,we also found that the direction of the titration could affect the properties of the equilibria of FA from the weathered coal,and the acidic functional groups contained in FA from the weathered coal were larger in quantity than those contained in HA and FA from the dark loessial soil.
基金Supported by the National Natural Science Foundation of China(Nos.32172978,31772857)the Natural Science Foundation of Tianjin(No.22JCYBJC00430)+2 种基金the Tianjin Science and Technology Planning Project(No.22ZYCGSN00050)the Fundamental Research Funds of Tianjin Universities(Nos.2020ZD06,2021KJ110)the Gansu Science and Technology Project(Nos.21CX6NP223,2023ZZ1NC006)。
文摘Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degrading bacteria strain was isolated from S_6.According to 16S rDNA gene sequence and biochemical characteristics,the isolated strain was identified and named Nitratireductor aquimarinus D_(1).Fulvic acid(FA),as a widely existing photosensitizer involved in MC photodegradation,coexists with MC-degrading bacteria in natural water.The synergistic effects of N.aquimarinus D_(1) and FA on MC degradation were evaluated via comparing the degradation rate of MC induced by N.aquimarinus D_(1) and FA alone and in combination under natural light conditions.Compared with the control group,the supplementation of N.aquimarinus D_(1) and FA alone or in combination could significantly increase the degradation rate of MC(P<0.05).In the first 36 h,the degradation effect of FA on MC was better than that of N.aquimarinus D_(1),but the degradation effect was opposite at 48 h.N.aquimarinus D_(1) and FA did not show synergistic effect on MC degradation until 48 h.In the application of N.aquimarinus and FA to degrade MC in aquaculture pond,there might be a time-lag effect in the synergistic degradation.
基金supported by the Key Research and Development Project of Shandong (Nos.2021CXGC011202,2020CXGC011404,and 2022CXGC021002)the National Natural Science Foundation of China (No.22276006)。
文摘This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal efficiency(FRE)decreased from 90.22 to 23.11%when FA concentrations in the reactor were increased from 0 to 162.30 mg/L,and that molecular size,degree of aromatization and humification of the effluent FA macromolecules all increased after treatment.Microbial population analysis indicated that the proliferation of the Comamonas,OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations(<50.59 mg/L),promoting the degradation and removal of macromolecular FA.In addition,the sustained increase in external FA may decrease the abundance of above functional microorganisms,resulting in a rapid drop in FRE.Furthermore,from the genetic perspective,the elevated FA levels restricted carbohydrate(ko00620,ko00010 and ko00020)and nitrogen(HAO,AMO,NIR and NOR)metabolism-related pathways,thereby impeding FA removal and total nitrogen loss associated with N_(2)O emissions.
基金Supported by Project of Hebei Provincial Department of Science and Technology"Key Technology Research and Industrialization Development Project of Hawthorn Industry in Xinglong County"(23317102D)Project of Hebei(Chengde)Hawthorn Industry Technology Research Institute.
文摘[Objectives]To investigate the effects of three foliar fertilizers on photosynthetic characteristics,fruit quality and yield of hawthorn.[Methods]Taking hawthorn foliar fertilization as the reference,the photosynthetic rate,transpiration rate,intercellular CO 2 concentration,stomatal conductance and single fruit weight of hawthorn leaves were measured under different concentrations of foliar fertilizer.[Results]The results showed that the photosynthetic rate,transpiration rate and stomatal conductance of hawthorn leaves increased significantly,while the intercellular CO 2 concentration decreased.Specifically,the fish protein peptide foliar fertilizer performed best,with net photosynthetic rate and transpiration rate increased by 57.22%and 57.51%,respectively.All the three foliar fertilizers significantly reduced the intercellular CO 2 concentration.In addition,fertilization significantly increased the single fruit weight of hawthorn,and the effect of fermented fulvic acid foliar fertilizer was the most significant,with the highest growth rate of 68.49%.[Conclusions]Spraying foliar fertilizer significantly increased the content of Vc,titratable acid,anthocyanin and soluble solids of hawthorn fruit,among which fermented fulvic acid foliar fertilizer had the optimal effect.
基金This work was supported by the Natural Science Foundation of China(No.51938010)the Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment(No.XTCXSZ2022-1).
文摘Humic acid(HA)is a typical refractory organicmatter,so it is of great significance to investigate its effect on the performance of Anammox granular sludge.When the dosage ofHA≤50 mg/L,HA promotes the total nitrogen removal rate(NRR)to 1.45 kg/(m^(3)·day).When HA was between 50 and 100 mg/L,the NRR of Anammox was stable.At this time,the adsorption of HA causes the sludge to gradually turn fromred to brown,but the activities of heme and enzymes showed that its capacitywas not affected.When HA levels reached 250 mg/L,the NRR dropped to 0.11 kg/(m^(3)·day).Moderate HA levels promoted the release of extracellular polymeric substance(EPS),but excessive HA levels lead to a decrease in EPS concentrations.HA inhibited Anammox activity,which indirectly hindered the transmission of substrate and accumulated substrate toxicity.Although HA promoted the increase of heterotrophicmicrobial abundance in Anammox system,the microbial diversity decreased gradually.With the increase of HA concentration,the abundance of Candidatus_Brocadia,the main functional microorganism of Anammox system,decreased gradually,while the abundance of Candidatus_Kuenenia increased gradually.