Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte...Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.展开更多
Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of th...Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition.展开更多
The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising appr...The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising approach. Therefore, a pot experiment was conducted to determine the efficacy of exogenous humic acid on wheat under water deficit stress via a completely randomized design (CRD) with three replications. The impacts of four growing conditions, i.e., well water (65% field capacity), water deficit stress (35% field capacity), soil application of humic acid (44 mg kg−1 soil) under water deficit stress and foliar feeding of humic acid (200 ppm) under water deficit stress, were investigated on two wheat varieties (BWMRI Gom 1 and BWMRI Gom 3). The results demonstrated that water deficit stress substantially decreased the studied morphological and physiological traits, yield components and yield, in both genotypes, with the exception of the proline content of flag leaves. Compared with soil application, foliar feeding of humic acid promoted the ability of wheat to overcome stress conditions better. In the present study, humic acid as a soil application increased the grain yield by 9.13% and 13.86% and the biological yield by 9.94% and 5.19%, whereas foliar treatment increased the grain output by 24.76% and 25.19% and the biological yield by 19.23% and 6.50% in BWMRI Gom 1 and BWMRI Gom 3, respectively, under water deficit stress. Therefore, exogenous foliar humic acid treatment was more effective than soil application in alleviating the effects of drought stress on wheat.展开更多
Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targ...Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.展开更多
Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence...Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.展开更多
Food waste,owing to its high organic content and moisture,offers a more scientifically sound resource utilization method compared to traditional treatment processes.This study presents a method to convert food waste i...Food waste,owing to its high organic content and moisture,offers a more scientifically sound resource utilization method compared to traditional treatment processes.This study presents a method to convert food waste into nitrogen-doped,modified hydrogel biochar modified food waste hydrogel biochar and investigates its effectiveness in adsorbing humic acid(HA).The modified biochar demonstrates superior adsorption capacity for HA compared to unmodified biochar.The adsorption follows the Langmuir isotherm model(R2=0.999),achieving a maximum adsorp-tion capacity of 49.5 mg/g with RL=0.0013-0.0051(0<RL<1).Furthermore,the adsorption process conforms to a pseudo-first-order model.The mechanism underlying HA adsorption involves the successful modification of food waste hydrogel biochar by 3-Aminopropyltriethoxysilane(APTES).This modification forms Si―R―NH_(3)^(+) on the biochar surface,which interacts with the COOH―groups in HA through hydrogen bonding and coordination bonds.Some unmodified APTES directly adsorbs onto the biochar surface,undergoing condensation and self-assembly to form ladder-like oligomeric siloxane polymers that enhance HA adsorption.展开更多
This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting t...This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge.展开更多
Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate w...Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate water shortage in agriculture and the application of lignite humic acid reduces the adverse effects of soil salinization.However,further research is needed to investigate the effects of different application rates of lignite humic acid and humic acid-based combined amendment on soil physicochemical properties,nutrient contents,and crop yield in saline-sodic farmlands under shallow-buried drip irrigation.A two-year field experiment was conducted with control without any amendment(CK),three treatments amended with 3 t/ha(H1),6 t/ha(H2),and 12 t/ha(H3)lignite humic acid,and three application rates with 15 t/ha(T1),22.5 t/ha(T2),and 30 t/ha(T3)lignite humic acid-based combined amendment in 2021 and2022.The results showed that H3 reduced soil bulk density,p H,electrical conductivity,and total alkalinity,while increasing the contents of soil organic matter,total nitrogen,and available potassium in the two-year experiment.Moreover,the maize yield in H3 increased by an average of 35.5%.T2 decreased soil bulk density,p H,total alkalinity,and increased maize yield by 16.2%,compared to the first year.These results suggest that T2 consistently improved both soil quality and crop yield.Correlation analyses showed that lignite humic acid and its complexes promote maize growth and increase yield by increasing soil organic matter and total nitrogen while reducing soil salinity and total alkalinity.Based on the comprehensive analysis of the field data and the results of the comprehensive evaluation of soil quality,it was determined that the appropriate improvement measures for saline-sodic farmlands under shallow-buried drip irrigation are the application of 12 t/ha of lignite humic acid and 22.5 t/ha of lignite humic acid-based combined amendment.This study demonstrates the effectiveness of lignite humic acid and its combined amendment in mitigating the constraints of saline-sodic farmlands and enhancing crop yields,providing a sustainable solution for improving saline-sodic farmlands in the West Liaohe Plain.展开更多
This review starts with the description of the quantitative significance of dissolved organic material in general and dissolved humic substances (HS) in particular in various ecosystems. Despite their high quantities,...This review starts with the description of the quantitative significance of dissolved organic material in general and dissolved humic substances (HS) in particular in various ecosystems. Despite their high quantities, the knowledge about the role of HS is still very low and full of old, but still recycled paradigms. HS are thought to be inert or at least refractory and too large to be taken up by aquatic organisms. Instead, I present evidence that dissolved HS that mainly derives from the terrestrial environment, are taken up and directly and/or indirectly interfere with freshwater organisms and, thus, structure biocenoses. Relatively well known is in the meantime the fuelling function of allochthonous HS, which, upon irradiation, release fatty acids, which serve as substrates for microbial growth. This is an indirect effect of HS. Microbes, in turn, are food for mixotrophic algae and (heterotrophic) zooplankton. Thus, non-eutrophicated freshwaters are net-heterotrophic, meaning that respiration exceeds primary production. Furthermore, model calculations exemplify that only a very small portion of the terrestrial production is sufficient to cause net-heterotrophy in these freshwater bodies. But, recent papers show also that due to different stoichiometries the maximal plankton biomass production with algae or mixotrophs is higher than with bacteria. Very recently, several direct effects of HS have been elucidated. Among them are:induction of chaperons (stress shock proteins), induction and modulation of biotransformation enzymes, modulation (mainly inhibition) of photosynthetic oxygen release of aquatic plants, production of an internal oxidative stress, modulation of the offspring numbers in the nematode Caenorhabditis elegans[WTBZ], feminization of fish and amphibs, interference within the thyroid system, and action as chemical attractant to C. elegans. We are still in the phase of identifying the various physiological, biochemical, and molecular-biological effects. Hence, the ecological and ecophysiological significance of these HS-mediated effects still remain somewhat obscure. Nevertheless, HS appear generally to have an impact on the individual as well as on the community and even ecosystem level comparable to that of, for instance, nutrients.展开更多
The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consi...The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consist evidences by two different sampling preparation methods that the interaction mechanism between humic substances and hematite was mainly conform to the ligand exchange involving carboxylic functional groups of humic substances and the surfaces sites of hematite. The present method, although associated with some uncertainties, provided an opportunity to increase the knowledge in this field.展开更多
The compost-derived humic substances(HS)can function as electron mediators for promoting hematite bioreduction because of its redox capacity.Humification process can affect redox capacities of compost-derived HS by ch...The compost-derived humic substances(HS)can function as electron mediators for promoting hematite bioreduction because of its redox capacity.Humification process can affect redox capacities of compost-derived HS by changing its intrinsic structure.However,the redox properties of compost-derived HS link-ing with hematite bioreduction during composting still remain unclear.Herein,we investigated the redox capacities of compost-derived HS,and assessed the responses of the redox capacities to the hematite bioreduction.The result showed that compost-derived HS(i.e.,humic acids(HA)and fulvic acids(FA))were able to accept electrons from Shewanella oneidensis MR-1,and the electron accepting capacity was increased during composting.Furthermore,it could be functioned as electron mediators for promoting the hematite bioreduction,achieving 1.19-2.15 times compared with the control experience.Not only the aromatic structures(quinone)but also the non-quinone structures such as nitrogen-and sulfur-containing functional moieties were served as the redox-active functional groups of compost-derived HS.Our work proved that the aromatic functional groups and the heteroatom structures(especially N)were important to the hematite bioreduction.This study highlights the redox-active properties of compost-derived HS and its impact on the microbial reduction of iron mineral.Redox capacity of compost-derived HS might mitigate the environmental risk of contaminants when the composting production was added into the contaminated soils as low-cost repair materials.展开更多
Humic acid(HA)can adsorb onto mineral surfaces,modifying the physicochemical properties of the mineral.Therefore,understanding the sorption behavior of HA onto mineral surfaces is of particular interest,since the fate...Humic acid(HA)can adsorb onto mineral surfaces,modifying the physicochemical properties of the mineral.Therefore,understanding the sorption behavior of HA onto mineral surfaces is of particular interest,since the fate and transport of many organic and inorganic contaminants are highly correlated to HA adsorbed onto clay surfaces.Due to the extreme heterogeneity of HA,the extracted IHSS Leonardite humic acid(LHA)used in this work was fractionated using an ultrafiltration technique(UF)into different molecular size fractions(Fr1,>0.2μm;Fr2,0.2 pm-300,000 daltons;Fr3,300,000-50,000 daltons;Fr4,50,000-10,000 daltons;Fr5,10,000-1000 daltons).Equilibrium and the kinetics of LHA and fraction adsorption onto kaolinite and montmorillonite were investigated.The results demonstrated that the maximum adsorption capacity of LHA,Frl,Fr2,Fr3,Fr4,and Fr5 was 5.99,13.69,10.29,7.02,5.9&and 5.09 on kaolinite while it was 8.29,22.62,13.17,8.91,8.62,and 5.69 on montmorillonite,respectively.The adsorption equilibrium data showed that the adsorption behavior of LHA and its fractions could be described more practically by the Langmuir model than the Freundlich model.The rate of humic acid fraction adsorption onto clays increased with decreasing molecular size fraction and increasing carboxylic group content.Pseudo-first-and second-order models were used to assess the kinetic data and the rate constants.The results explained that LHA and its fractions adsorption on clay minerals conformed more to pseudosecondo rder.展开更多
A model HA-type polymer of para-benzoquinone synthetic humic acid (SHA) and its complexes with copper, iron and manganese metal ions were studied using atomic force microscopy (AFM). Natural humic acids (HA) and synth...A model HA-type polymer of para-benzoquinone synthetic humic acid (SHA) and its complexes with copper, iron and manganese metal ions were studied using atomic force microscopy (AFM). Natural humic acids (HA) and synthetic humic acids (SHA) were examined by fluorescence spectroscopy, which indicated similarity of SHA and HA spectra. The AFM images of SHA and its complexes revealed variable morphologies, such as small spheres, aggregates and a sponge-like structure. The SHA complexes displayed morphologies similar to those of natural HA. The presence of copper, iron and manganese ions led to the formation of aggregate-type structures in an apparent arrangement of smaller SHA particles.展开更多
Humic acid (HA) is known to be a complex organic compound with varying structural and functional characteristics. In this study, three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM), ultr...Humic acid (HA) is known to be a complex organic compound with varying structural and functional characteristics. In this study, three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM), ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FT-IR) were applied to study the fluorescence characteristics and structure of two typical soil HAs in China. The effects of concentration of HA, pH and ionic strength on the fluorescence behaviors were investigated. The results indicate that ionic strength over the range from 0 to 0.05mol L^-1 NaNO3 did not affect the 3DEEM of HA. The concentration of HA and pH of the test solution had obvious effects on the 3DEEM. When the concentration of soil HA was lower than 10mg L^-1, HA has only one obvious fluorescence peak. However, there were several fluorescence peaks for HA in high concentration (≥50mg L^-1), and its Ex/Em maximum wavelength shifted towards longer wavelength with increasing the concentration of HA. The fluorescence intensity of HA enhanced with the increase of pH, and achieved maximum at pH 10. The effect of pH on the fluorescence intensity of black soil HA (BHA) was the severest and a polycondensation of BHA existed with the change of pH. At the same condition, the fluorescence intensity of red soil HA (RHA) was stronger than that of BHA. At the excitation wavelength of 340nm, the maximum emission peak positions of RHA and BHA were 474 and 504nm at pH 6.0, and their fluorescence quantum yields (QY) were 2.1-2.5% and 1.5-1.9%, respectively. Based on the maximum emission peak positions and fluorescence quantum yield, RHA and BHA can be distinguished.展开更多
The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance ...The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy.The results showed that the HAs were characterized by some common chemical and physicochemical properties,but they also pose some differences in the C-containing functional groups.The C/N,C/H,O/C,and O/H ratios differ widely for the various HAs,showing that the elemental comp...展开更多
Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, sugges...Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, suggesting that diflusion predominated the sorption of PFOS on the humic acid. The sorption capacity was doubled when the temperature increased from 5 to 35°C, and thermodynamics parameters △G0 was calculated to be –7.11 to –5.04 kJ/mol, △H0 was 14.2 kJ/mol, and △S 0 was 69.5 J/(mol·K), indicating that the sorption was a spontaneous, endothermic, and entropy driven process. Desorption hysteresis occurred at all studied temperatures which suggested that humic acid may be an important sink of PFOS in the environment.展开更多
Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the cu...Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the current study, a soil column experiment was conducted using the ^(15)N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizerderived N(fertilizer N). The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea(HAU). At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U. More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment. These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels. The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%. More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer. The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments. Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets. This is likely due to the abundance of the COO/C–N=O group in this HA component.展开更多
Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectrosc...Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC …展开更多
Molecular weight(Mw) is a fundamental property of humic acids(HAs), which considerably affect the mobility and speciation of heavy metals in the environment. In this study, soil humic acid(HA) extracted from Jin...Molecular weight(Mw) is a fundamental property of humic acids(HAs), which considerably affect the mobility and speciation of heavy metals in the environment. In this study, soil humic acid(HA) extracted from Jinyun Mountain, Chongqing was ultra-filtered into four fractions according to the molecular weight, and their properties were characterized.Complexation of cadmium was investigated by titration experiments. For the first time,Langmuir and non-ideal competitive adsorption-Donna(NICA-Donnan) models combined with fluorescence excitation-emission matrix(EEM) quenching were employed to elucidate the binding characteristics of individual Mw fractions of HA. The results showed that the concentration of acidic functional groups decreased with increasing Mw, especially the phenolic groups. The humification degree and aliphaticity increased with increasing Mw as indicated by elemental composition analysis and FT-IR spectra. The binding capacity of Cd2+ to Mw fractions of HA followed the order UF1(〈 5 kDa) 〉 UF2(5–10 kDa) 〉 UF4(〉 30 kDa) 〉 UF3(10–30 kDa). Moreover, the distribution of cadmium speciation indicated that the phenolic groups were responsible for the variations in binding of Cd2+ among different Mw fractions. The results of fluorescence quenching illustrated that the binding capacity of Cd2+ to Mw fractions was controlled by the content of functional groups, while the binding affinity was largely influenced by structural factors. The results provide a better understanding of the roles that different HA Mw fractions play in heavy metal binding,which has important implications in the control of heavy metal migration and bio-toxicity.展开更多
Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Cr...Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Nabentonite in the presence of N,N'-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0-8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG〉MB〉CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation.展开更多
基金supported by the Russian Science Foundation(23-29-00830).
文摘Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.
文摘Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition.
基金funded byDepartment of Crop Physiology and Ecology,HajeeMohammad Danesh Science and Technology University,Dinajpur 5200 Bangladesh and Taif University,Saudi Arabia,Project No.TU-DSPP-2024-07.
文摘The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising approach. Therefore, a pot experiment was conducted to determine the efficacy of exogenous humic acid on wheat under water deficit stress via a completely randomized design (CRD) with three replications. The impacts of four growing conditions, i.e., well water (65% field capacity), water deficit stress (35% field capacity), soil application of humic acid (44 mg kg−1 soil) under water deficit stress and foliar feeding of humic acid (200 ppm) under water deficit stress, were investigated on two wheat varieties (BWMRI Gom 1 and BWMRI Gom 3). The results demonstrated that water deficit stress substantially decreased the studied morphological and physiological traits, yield components and yield, in both genotypes, with the exception of the proline content of flag leaves. Compared with soil application, foliar feeding of humic acid promoted the ability of wheat to overcome stress conditions better. In the present study, humic acid as a soil application increased the grain yield by 9.13% and 13.86% and the biological yield by 9.94% and 5.19%, whereas foliar treatment increased the grain output by 24.76% and 25.19% and the biological yield by 19.23% and 6.50% in BWMRI Gom 1 and BWMRI Gom 3, respectively, under water deficit stress. Therefore, exogenous foliar humic acid treatment was more effective than soil application in alleviating the effects of drought stress on wheat.
基金supported by the National Natural Science Foundation of China(No.52200049)the China Postdoctoral Science Foundation(No.2022TQ0089)the Heilongjiang Province Postdoctoral Science Foundation(No.LBHZ22181).
文摘Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.
基金supported by the National Key R&D Program of China(No.2022YFC3701102)the National Natural Science Foundation of China(Nos.22376029,22176038,91744205 and 21777025)the Natural Science Foundation of Shanghai City(No.22ZR1404700).
文摘Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.
基金The National Natural Science Foundation of China(No.52470216)the Natural Science Foundation of Jiangsu Province(No.BK20211175).
文摘Food waste,owing to its high organic content and moisture,offers a more scientifically sound resource utilization method compared to traditional treatment processes.This study presents a method to convert food waste into nitrogen-doped,modified hydrogel biochar modified food waste hydrogel biochar and investigates its effectiveness in adsorbing humic acid(HA).The modified biochar demonstrates superior adsorption capacity for HA compared to unmodified biochar.The adsorption follows the Langmuir isotherm model(R2=0.999),achieving a maximum adsorp-tion capacity of 49.5 mg/g with RL=0.0013-0.0051(0<RL<1).Furthermore,the adsorption process conforms to a pseudo-first-order model.The mechanism underlying HA adsorption involves the successful modification of food waste hydrogel biochar by 3-Aminopropyltriethoxysilane(APTES).This modification forms Si―R―NH_(3)^(+) on the biochar surface,which interacts with the COOH―groups in HA through hydrogen bonding and coordination bonds.Some unmodified APTES directly adsorbs onto the biochar surface,undergoing condensation and self-assembly to form ladder-like oligomeric siloxane polymers that enhance HA adsorption.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant No.51972209).
文摘This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge.
基金Under the auspices of the National Key Research and Development Program of China(No.2022YFD1500501)the Innovation Team Project of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.2023CXTD02)+2 种基金the National Natural Science Foundation of China(No.41971066)the Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)the High Tech Fund Project of S&T Cooperation between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate water shortage in agriculture and the application of lignite humic acid reduces the adverse effects of soil salinization.However,further research is needed to investigate the effects of different application rates of lignite humic acid and humic acid-based combined amendment on soil physicochemical properties,nutrient contents,and crop yield in saline-sodic farmlands under shallow-buried drip irrigation.A two-year field experiment was conducted with control without any amendment(CK),three treatments amended with 3 t/ha(H1),6 t/ha(H2),and 12 t/ha(H3)lignite humic acid,and three application rates with 15 t/ha(T1),22.5 t/ha(T2),and 30 t/ha(T3)lignite humic acid-based combined amendment in 2021 and2022.The results showed that H3 reduced soil bulk density,p H,electrical conductivity,and total alkalinity,while increasing the contents of soil organic matter,total nitrogen,and available potassium in the two-year experiment.Moreover,the maize yield in H3 increased by an average of 35.5%.T2 decreased soil bulk density,p H,total alkalinity,and increased maize yield by 16.2%,compared to the first year.These results suggest that T2 consistently improved both soil quality and crop yield.Correlation analyses showed that lignite humic acid and its complexes promote maize growth and increase yield by increasing soil organic matter and total nitrogen while reducing soil salinity and total alkalinity.Based on the comprehensive analysis of the field data and the results of the comprehensive evaluation of soil quality,it was determined that the appropriate improvement measures for saline-sodic farmlands under shallow-buried drip irrigation are the application of 12 t/ha of lignite humic acid and 22.5 t/ha of lignite humic acid-based combined amendment.This study demonstrates the effectiveness of lignite humic acid and its combined amendment in mitigating the constraints of saline-sodic farmlands and enhancing crop yields,providing a sustainable solution for improving saline-sodic farmlands in the West Liaohe Plain.
文摘This review starts with the description of the quantitative significance of dissolved organic material in general and dissolved humic substances (HS) in particular in various ecosystems. Despite their high quantities, the knowledge about the role of HS is still very low and full of old, but still recycled paradigms. HS are thought to be inert or at least refractory and too large to be taken up by aquatic organisms. Instead, I present evidence that dissolved HS that mainly derives from the terrestrial environment, are taken up and directly and/or indirectly interfere with freshwater organisms and, thus, structure biocenoses. Relatively well known is in the meantime the fuelling function of allochthonous HS, which, upon irradiation, release fatty acids, which serve as substrates for microbial growth. This is an indirect effect of HS. Microbes, in turn, are food for mixotrophic algae and (heterotrophic) zooplankton. Thus, non-eutrophicated freshwaters are net-heterotrophic, meaning that respiration exceeds primary production. Furthermore, model calculations exemplify that only a very small portion of the terrestrial production is sufficient to cause net-heterotrophy in these freshwater bodies. But, recent papers show also that due to different stoichiometries the maximal plankton biomass production with algae or mixotrophs is higher than with bacteria. Very recently, several direct effects of HS have been elucidated. Among them are:induction of chaperons (stress shock proteins), induction and modulation of biotransformation enzymes, modulation (mainly inhibition) of photosynthetic oxygen release of aquatic plants, production of an internal oxidative stress, modulation of the offspring numbers in the nematode Caenorhabditis elegans[WTBZ], feminization of fish and amphibs, interference within the thyroid system, and action as chemical attractant to C. elegans. We are still in the phase of identifying the various physiological, biochemical, and molecular-biological effects. Hence, the ecological and ecophysiological significance of these HS-mediated effects still remain somewhat obscure. Nevertheless, HS appear generally to have an impact on the individual as well as on the community and even ecosystem level comparable to that of, for instance, nutrients.
文摘The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consist evidences by two different sampling preparation methods that the interaction mechanism between humic substances and hematite was mainly conform to the ligand exchange involving carboxylic functional groups of humic substances and the surfaces sites of hematite. The present method, although associated with some uncertainties, provided an opportunity to increase the knowledge in this field.
基金supported by Central Research Institutes of Basic Research and Public Service Special Operations of Chinese Research Academy of Environmental Sciences(No.2019YSKY-023).
文摘The compost-derived humic substances(HS)can function as electron mediators for promoting hematite bioreduction because of its redox capacity.Humification process can affect redox capacities of compost-derived HS by changing its intrinsic structure.However,the redox properties of compost-derived HS link-ing with hematite bioreduction during composting still remain unclear.Herein,we investigated the redox capacities of compost-derived HS,and assessed the responses of the redox capacities to the hematite bioreduction.The result showed that compost-derived HS(i.e.,humic acids(HA)and fulvic acids(FA))were able to accept electrons from Shewanella oneidensis MR-1,and the electron accepting capacity was increased during composting.Furthermore,it could be functioned as electron mediators for promoting the hematite bioreduction,achieving 1.19-2.15 times compared with the control experience.Not only the aromatic structures(quinone)but also the non-quinone structures such as nitrogen-and sulfur-containing functional moieties were served as the redox-active functional groups of compost-derived HS.Our work proved that the aromatic functional groups and the heteroatom structures(especially N)were important to the hematite bioreduction.This study highlights the redox-active properties of compost-derived HS and its impact on the microbial reduction of iron mineral.Redox capacity of compost-derived HS might mitigate the environmental risk of contaminants when the composting production was added into the contaminated soils as low-cost repair materials.
基金funded by a Fulbright Visiting Scholar fellowship to Mohamed El-sayed and performed at South Dakota State University
文摘Humic acid(HA)can adsorb onto mineral surfaces,modifying the physicochemical properties of the mineral.Therefore,understanding the sorption behavior of HA onto mineral surfaces is of particular interest,since the fate and transport of many organic and inorganic contaminants are highly correlated to HA adsorbed onto clay surfaces.Due to the extreme heterogeneity of HA,the extracted IHSS Leonardite humic acid(LHA)used in this work was fractionated using an ultrafiltration technique(UF)into different molecular size fractions(Fr1,>0.2μm;Fr2,0.2 pm-300,000 daltons;Fr3,300,000-50,000 daltons;Fr4,50,000-10,000 daltons;Fr5,10,000-1000 daltons).Equilibrium and the kinetics of LHA and fraction adsorption onto kaolinite and montmorillonite were investigated.The results demonstrated that the maximum adsorption capacity of LHA,Frl,Fr2,Fr3,Fr4,and Fr5 was 5.99,13.69,10.29,7.02,5.9&and 5.09 on kaolinite while it was 8.29,22.62,13.17,8.91,8.62,and 5.69 on montmorillonite,respectively.The adsorption equilibrium data showed that the adsorption behavior of LHA and its fractions could be described more practically by the Langmuir model than the Freundlich model.The rate of humic acid fraction adsorption onto clays increased with decreasing molecular size fraction and increasing carboxylic group content.Pseudo-first-and second-order models were used to assess the kinetic data and the rate constants.The results explained that LHA and its fractions adsorption on clay minerals conformed more to pseudosecondo rder.
基金The authors acknowledge CAPES(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)and CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico)process 302756/2009-4 for their financial supportEMBRAPA(Empresa Brasileira de Pesqui-sa Agropecuária)for its structural support of this work
文摘A model HA-type polymer of para-benzoquinone synthetic humic acid (SHA) and its complexes with copper, iron and manganese metal ions were studied using atomic force microscopy (AFM). Natural humic acids (HA) and synthetic humic acids (SHA) were examined by fluorescence spectroscopy, which indicated similarity of SHA and HA spectra. The AFM images of SHA and its complexes revealed variable morphologies, such as small spheres, aggregates and a sponge-like structure. The SHA complexes displayed morphologies similar to those of natural HA. The presence of copper, iron and manganese ions led to the formation of aggregate-type structures in an apparent arrangement of smaller SHA particles.
基金Acknowledgements: This work is supported by the Project of the Educational Administration Foundation of Shanghai Municipal Government (No. 05Ja05054 and No. 05DZ01), Shanghai Leading Academic Discipline Project (No. T0402) and Hunan Provincial Natural Science Foundation of China.
文摘Humic acid (HA) is known to be a complex organic compound with varying structural and functional characteristics. In this study, three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM), ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FT-IR) were applied to study the fluorescence characteristics and structure of two typical soil HAs in China. The effects of concentration of HA, pH and ionic strength on the fluorescence behaviors were investigated. The results indicate that ionic strength over the range from 0 to 0.05mol L^-1 NaNO3 did not affect the 3DEEM of HA. The concentration of HA and pH of the test solution had obvious effects on the 3DEEM. When the concentration of soil HA was lower than 10mg L^-1, HA has only one obvious fluorescence peak. However, there were several fluorescence peaks for HA in high concentration (≥50mg L^-1), and its Ex/Em maximum wavelength shifted towards longer wavelength with increasing the concentration of HA. The fluorescence intensity of HA enhanced with the increase of pH, and achieved maximum at pH 10. The effect of pH on the fluorescence intensity of black soil HA (BHA) was the severest and a polycondensation of BHA existed with the change of pH. At the same condition, the fluorescence intensity of red soil HA (RHA) was stronger than that of BHA. At the excitation wavelength of 340nm, the maximum emission peak positions of RHA and BHA were 474 and 504nm at pH 6.0, and their fluorescence quantum yields (QY) were 2.1-2.5% and 1.5-1.9%, respectively. Based on the maximum emission peak positions and fluorescence quantum yield, RHA and BHA can be distinguished.
基金the National Basic Research Program (973) of China (No.2004CB418502,2003CB415002)the National Natural Science Foundation of China (No.29977002).
文摘The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy.The results showed that the HAs were characterized by some common chemical and physicochemical properties,but they also pose some differences in the C-containing functional groups.The C/N,C/H,O/C,and O/H ratios differ widely for the various HAs,showing that the elemental comp...
基金supported by the National Natural Science Foundation of China (No. 20477050, 20621703)
文摘Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, suggesting that diflusion predominated the sorption of PFOS on the humic acid. The sorption capacity was doubled when the temperature increased from 5 to 35°C, and thermodynamics parameters △G0 was calculated to be –7.11 to –5.04 kJ/mol, △H0 was 14.2 kJ/mol, and △S 0 was 69.5 J/(mol·K), indicating that the sorption was a spontaneous, endothermic, and entropy driven process. Desorption hysteresis occurred at all studied temperatures which suggested that humic acid may be an important sink of PFOS in the environment.
基金supported by the National Natural Science Foundation of China (31601827)the National Key Research and Development Program of China (2016YFD0200402)
文摘Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the current study, a soil column experiment was conducted using the ^(15)N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizerderived N(fertilizer N). The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea(HAU). At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U. More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment. These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels. The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%. More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer. The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments. Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets. This is likely due to the abundance of the COO/C–N=O group in this HA component.
文摘Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC …
基金supported by the National Natural Science Foundation of China(Nos.41771347 and 4177010514)
文摘Molecular weight(Mw) is a fundamental property of humic acids(HAs), which considerably affect the mobility and speciation of heavy metals in the environment. In this study, soil humic acid(HA) extracted from Jinyun Mountain, Chongqing was ultra-filtered into four fractions according to the molecular weight, and their properties were characterized.Complexation of cadmium was investigated by titration experiments. For the first time,Langmuir and non-ideal competitive adsorption-Donna(NICA-Donnan) models combined with fluorescence excitation-emission matrix(EEM) quenching were employed to elucidate the binding characteristics of individual Mw fractions of HA. The results showed that the concentration of acidic functional groups decreased with increasing Mw, especially the phenolic groups. The humification degree and aliphaticity increased with increasing Mw as indicated by elemental composition analysis and FT-IR spectra. The binding capacity of Cd2+ to Mw fractions of HA followed the order UF1(〈 5 kDa) 〉 UF2(5–10 kDa) 〉 UF4(〉 30 kDa) 〉 UF3(10–30 kDa). Moreover, the distribution of cadmium speciation indicated that the phenolic groups were responsible for the variations in binding of Cd2+ among different Mw fractions. The results of fluorescence quenching illustrated that the binding capacity of Cd2+ to Mw fractions was controlled by the content of functional groups, while the binding affinity was largely influenced by structural factors. The results provide a better understanding of the roles that different HA Mw fractions play in heavy metal binding,which has important implications in the control of heavy metal migration and bio-toxicity.
文摘Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Nabentonite in the presence of N,N'-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0-8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG〉MB〉CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation.