Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineerin...Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.展开更多
The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interac...The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interaction interface based on Gantt chart is designed,which can not only comprehensively and quantitatively represent the scheduling process and scheduling scheme,but also have friendly human-computer interaction performance.The data transmission and interaction architecture is constructed to realize the rapid response to shop floor disturbance events.A priority calculation algorithm integrating priority rules and dispatcher preference is proposed,which realizes the automatic calculation of priority for the dispatcher's reference and reduces theirburden.A man-machine interactive shop floor dynamic scheduling strategy is proposed.When solving the dynamic flexible job shop scheduling problem caused by machine tool breakdown and urgent order,the origin moments obtained by using this strategy are 0.4190 and 0.3703 respectively.As can be seen from the origin moment indicator,the dynamic shop floor scheduling system based on the human-computer interaction is efficient and reliable in solving dynamic scheduling problems,and related strategies of this system are also feasible and stable.展开更多
Accurate capture and presentation of the interactive feedback relationships among various objectives in multi-objective reservoir operation is essential for maximizing operational benefits.In this study,the niche theo...Accurate capture and presentation of the interactive feedback relationships among various objectives in multi-objective reservoir operation is essential for maximizing operational benefits.In this study,the niche theory of ecology was innovatively applied to the field of reservoir operation,and a novel state-relationship(S-R)measurement analysis method was developed for multi-objective reservoir operation.This method enables the study of interaction among multiple objectives.This method was used to investigate the relationship among the objectives of power generation,water supply,and ecological protection for cascade reservoir operation in the Wujiang River Basin in China.The results indicated that the ecological protection objective was the most competitive in acquiring and capturing resources like flow and water level,while the water supply objective was the weakest.Power generation competed most strongly with ecological protection and relatively weakly with water supply.These findings facilitate decision-making throughout the reservoir operation process in the region.The S-R method based on the niche theory is convenient,efficient,and intuitive,allowing for the quantification of feedback relationships among objectives without requiring the solution of the Pareto frontier of a multi-objective problem in advance.This method provides a novel and feasible idea for studying multi-objective interactions.展开更多
In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operati...In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.展开更多
With increasing awareness of environmental protection and rising carbon emission costs,participation in electricity and carbon markets for energy-intensive industrial users will become an effective way to reduce opera...With increasing awareness of environmental protection and rising carbon emission costs,participation in electricity and carbon markets for energy-intensive industrial users will become an effective way to reduce operating costs and carbon emissions.In this regard,a novel Stackelberg game framework is developed in this study for coordinated participation in coupled electricity‒carbon markets.Specifically,generalized carbon emission models and electricity consumption models for different energy-intensive industrial users are established,and a Stackelberg game-based interactive operation strategy is proposed for load aggregators(LAs)and energy-intensive industrial users in joint electricity‒carbon markets,where the LA works as a leader who chooses proper interactive prices to maximize the comprehensive benefit,whereas energy-intensive industrial users serve as followers who minimize the total energy costs in response to the interactive prices set by the LA.Then,the existence and uniqueness of the Stackelberg equilibrium(SE)are analyzed,and a decentralized solution algorithm is suggested to reach the SE.Finally,the simulation results demonstrate that the proposed interactive operation strategy can not only increase the profit of the LA but also reduce the cost of energy-intensive industrial users,which achieves a win-win result.展开更多
Recently,vision-based gesture recognition(VGR)has become a hot research spot in human-computer interaction(HCI).Unlike other gesture recognition methods with data gloves or other wearable sensors,vision-based gesture ...Recently,vision-based gesture recognition(VGR)has become a hot research spot in human-computer interaction(HCI).Unlike other gesture recognition methods with data gloves or other wearable sensors,vision-based gesture recognition could lead to more natural and intuitive HCI interactions.This paper reviews the state-of-the-art vision-based gestures recognition methods,from different stages of gesture recognition process,i.e.,(1)image acquisition and pre-processing,(2)gesture segmentation,(3)gesture tracking,(4)feature extraction,and(5)gesture classification.This paper also analyzes the advantages and disadvantages of these various methods in detail.Finally,the challenges of vision-based gesture recognition in haptic rendering and future research directions are discussed.展开更多
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Xizang Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-...With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates...Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.展开更多
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
We extend the method of searching “eigen-operator” of the square of the Schroedinger operator to the interaction picture, which not only helps to construct Hamiltonians of two kinds of parametric amplifiers but also...We extend the method of searching “eigen-operator” of the square of the Schroedinger operator to the interaction picture, which not only helps to construct Hamiltonians of two kinds of parametric amplifiers but also leads to a new uncertainty relation regarding to the free Hamiltonian and the interacting Hamiltonian.展开更多
A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed mode...A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.展开更多
Flight delay prediction has attracted great interest in civil aviation community due to its significant role in airline planning,flight scheduling,airport operation,and passenger service.Flight delay is affected by nu...Flight delay prediction has attracted great interest in civil aviation community due to its significant role in airline planning,flight scheduling,airport operation,and passenger service.Flight delay is affected by numerous factors and irregularly propagates in air transportation networks owing to flight connectivity,which brings critical challenges to accurate flight delay prediction.In recent years,Graph Convolutional Networks(GCNs)have become popular in flight delay prediction due to the advantage in extracting complicated relationships.However,most of the existing GCN-based methods have failed to effectively capture the spatial-temporal information in flight delay prediction.In this paper,a Geographical and Operational Graph Convolutional Network(GOGCN)is proposed for multi-airport flight delay prediction.The GOGCN is a GCN-based spatial-temporal model that improves node feature representation ability with geographical and operational spatial-temporal interactions in a graph.Specifically,an operational aggregator is designed to extract global operational information based on the graph structure,while a geographical aggregator is developed to capture the similar nature among spatially close airports.Extensive experiments on a real-world dataset demonstrate that the proposed approach outperforms the state-of-the-art methods with a satisfying accuracy improvement.展开更多
To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. ...To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.展开更多
The(2 + 1)-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable(2 + 1)-dimensional Ito eq...The(2 + 1)-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable(2 + 1)-dimensional Ito equation contains lump solutions and interaction solutions between lump and stripe solitons. The result shows that the lump soliton will be swallowed or arisen by a stripe soliton in a fixed time. Furthermore, by the interaction between a lump and a paired resonant stripe soliton, the lump will be transformed to an instanton or a rogue wave.展开更多
We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one ...We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.展开更多
Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems.However,previous gaze estimation techniques generally work only in a controlled laboratory environment...Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems.However,previous gaze estimation techniques generally work only in a controlled laboratory environment because they require a number of high-resolution eye images.This makes them unsuitable for welfare and healthcare facilities with the following challenging characteristics:1)users’continuous movements,2)various lighting conditions,and 3)a limited amount of available data.To address these issues,we introduce a multi-view multi-modal head-gaze estimation system that translates the user’s head orientation into the gaze direction.The proposed system captures the user using multiple cameras with depth and infrared modalities to train more robust gaze estimators under the aforementioned conditions.To this end,we implemented a deep learning pipeline that can handle different types and combinations of data.The proposed system was evaluated using the data collected from 10 volunteer participants to analyze how the use of single/multiple cameras and modalities affect the performance of head-gaze estimators.Through various experiments,we found that 1)an infrared-modality provides more useful features than a depth-modality,2)multi-view multi-modal approaches provide better accuracy than singleview single-modal approaches,and 3)the proposed estimators achieve a high inference efficiency that can be used in real-time applications.展开更多
Artificial entities,such as virtual agents,have become more pervasive.Their long-term presence among humans requires the virtual agent’s ability to express appropriate emotions to elicit the necessary empathy from th...Artificial entities,such as virtual agents,have become more pervasive.Their long-term presence among humans requires the virtual agent’s ability to express appropriate emotions to elicit the necessary empathy from the users.Affective empathy involves behavioral mimicry,a synchronized co-movement between dyadic pairs.However,the characteristics of such synchrony between humans and virtual agents remain unclear in empathic interactions.Our study evaluates the participant’s behavioral synchronization when a virtual agent exhibits an emotional expression congruent with the emotional context through facial expressions,behavioral gestures,and voice.Participants viewed an emotion-eliciting video stimulus(negative or positive)with a virtual agent.The participants then conversed with the virtual agent about the video,such as how the participant felt about the content.The virtual agent expressed emotions congruent with the video or neutral emotion during the dialog.The participants’facial expressions,such as the facial expressive intensity and facial muscle movement,were measured during the dialog using a camera.The results showed the participants’significant behavioral synchronization(i.e.,cosine similarity≥.05)in both the negative and positive emotion conditions,evident in the participant’s facial mimicry with the virtual agent.Additionally,the participants’facial expressions,both movement and intensity,were significantly stronger in the emotional virtual agent than in the neutral virtual agent.In particular,we found that the facial muscle intensity of AU45(Blink)is an effective index to assess the participant’s synchronization that differs by the individual’s empathic capability(low,mid,high).Based on the results,we suggest an appraisal criterion to provide empirical conditions to validate empathic interaction based on the facial expression measures.展开更多
基金financially supported by the National Key Research and Development Program of China-Young Scientist Project(No.2024YFC2815400)the National Natural Science Foundation of China(No.52588202).
文摘Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.
基金supported by the Tianjin Enterprise Science and Technology Commissioner Project(Grant No.23YDTPJC00740,Grant No.24YDTPJC00610)the Tianjin Tiankai Higher Education Science and Technology Innovation Park Enterprise R&D Special Project(Grant No.23YFZXYC00027).
文摘The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interaction interface based on Gantt chart is designed,which can not only comprehensively and quantitatively represent the scheduling process and scheduling scheme,but also have friendly human-computer interaction performance.The data transmission and interaction architecture is constructed to realize the rapid response to shop floor disturbance events.A priority calculation algorithm integrating priority rules and dispatcher preference is proposed,which realizes the automatic calculation of priority for the dispatcher's reference and reduces theirburden.A man-machine interactive shop floor dynamic scheduling strategy is proposed.When solving the dynamic flexible job shop scheduling problem caused by machine tool breakdown and urgent order,the origin moments obtained by using this strategy are 0.4190 and 0.3703 respectively.As can be seen from the origin moment indicator,the dynamic shop floor scheduling system based on the human-computer interaction is efficient and reliable in solving dynamic scheduling problems,and related strategies of this system are also feasible and stable.
基金supported by the National Key Research&Development Project of China(Grant No.2016YFC0402209)and the China Scholarship Council.
文摘Accurate capture and presentation of the interactive feedback relationships among various objectives in multi-objective reservoir operation is essential for maximizing operational benefits.In this study,the niche theory of ecology was innovatively applied to the field of reservoir operation,and a novel state-relationship(S-R)measurement analysis method was developed for multi-objective reservoir operation.This method enables the study of interaction among multiple objectives.This method was used to investigate the relationship among the objectives of power generation,water supply,and ecological protection for cascade reservoir operation in the Wujiang River Basin in China.The results indicated that the ecological protection objective was the most competitive in acquiring and capturing resources like flow and water level,while the water supply objective was the weakest.Power generation competed most strongly with ecological protection and relatively weakly with water supply.These findings facilitate decision-making throughout the reservoir operation process in the region.The S-R method based on the niche theory is convenient,efficient,and intuitive,allowing for the quantification of feedback relationships among objectives without requiring the solution of the Pareto frontier of a multi-objective problem in advance.This method provides a novel and feasible idea for studying multi-objective interactions.
基金the Talent Fund of Beijing Jiaotong University(Grant No.2024XKRC055).
文摘In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.
基金grateful for the financial support from the National Key R&D Program of China(2023YFB2407300).
文摘With increasing awareness of environmental protection and rising carbon emission costs,participation in electricity and carbon markets for energy-intensive industrial users will become an effective way to reduce operating costs and carbon emissions.In this regard,a novel Stackelberg game framework is developed in this study for coordinated participation in coupled electricity‒carbon markets.Specifically,generalized carbon emission models and electricity consumption models for different energy-intensive industrial users are established,and a Stackelberg game-based interactive operation strategy is proposed for load aggregators(LAs)and energy-intensive industrial users in joint electricity‒carbon markets,where the LA works as a leader who chooses proper interactive prices to maximize the comprehensive benefit,whereas energy-intensive industrial users serve as followers who minimize the total energy costs in response to the interactive prices set by the LA.Then,the existence and uniqueness of the Stackelberg equilibrium(SE)are analyzed,and a decentralized solution algorithm is suggested to reach the SE.Finally,the simulation results demonstrate that the proposed interactive operation strategy can not only increase the profit of the LA but also reduce the cost of energy-intensive industrial users,which achieves a win-win result.
基金Supported by the National Natural Science Foundation of China(61773205,61773219)the Fundamental Research Funds for the Central Universities(NS2016032,NS2019018,Nanjing University of Aeronautics and Astronautics)+1 种基金the Scholarship from China Scholarship Council(201906835020)the Fundamental Research Funds for the Central Universities(the Graduate Student Innovation Base Open Fund Project of NUAA,kfjj20190307)。
文摘Recently,vision-based gesture recognition(VGR)has become a hot research spot in human-computer interaction(HCI).Unlike other gesture recognition methods with data gloves or other wearable sensors,vision-based gesture recognition could lead to more natural and intuitive HCI interactions.This paper reviews the state-of-the-art vision-based gestures recognition methods,from different stages of gesture recognition process,i.e.,(1)image acquisition and pre-processing,(2)gesture segmentation,(3)gesture tracking,(4)feature extraction,and(5)gesture classification.This paper also analyzes the advantages and disadvantages of these various methods in detail.Finally,the challenges of vision-based gesture recognition in haptic rendering and future research directions are discussed.
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Xizang Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
文摘With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
基金supported by the China Fundamental Research Funds for the Central Universities(2022JBQY006)。
文摘Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
基金The project supported by National Natural Science Foundation of China and the Doctoral Tutoring Foundation of the Ministry of Education of Chin
文摘We extend the method of searching “eigen-operator” of the square of the Schroedinger operator to the interaction picture, which not only helps to construct Hamiltonians of two kinds of parametric amplifiers but also leads to a new uncertainty relation regarding to the free Hamiltonian and the interacting Hamiltonian.
基金This work was supported by the Project funded by China Postdoctoral Science Foundation under Grant 2019M651081the Merit Funding for the Returned Overseas Personnel Sci-Tech Activities of Shanxi Province under Grant 2016 and Key Research and Development Program of Shanxi(2019)and Innovation Programs of Higher Education Institutions in Shanxi(2019L0305).
文摘A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.
基金supported by the National Natural Science Foundation of China(Nos.71731001,U2133210,and U2033215,61822102)。
文摘Flight delay prediction has attracted great interest in civil aviation community due to its significant role in airline planning,flight scheduling,airport operation,and passenger service.Flight delay is affected by numerous factors and irregularly propagates in air transportation networks owing to flight connectivity,which brings critical challenges to accurate flight delay prediction.In recent years,Graph Convolutional Networks(GCNs)have become popular in flight delay prediction due to the advantage in extracting complicated relationships.However,most of the existing GCN-based methods have failed to effectively capture the spatial-temporal information in flight delay prediction.In this paper,a Geographical and Operational Graph Convolutional Network(GOGCN)is proposed for multi-airport flight delay prediction.The GOGCN is a GCN-based spatial-temporal model that improves node feature representation ability with geographical and operational spatial-temporal interactions in a graph.Specifically,an operational aggregator is designed to extract global operational information based on the graph structure,while a geographical aggregator is developed to capture the similar nature among spatially close airports.Extensive experiments on a real-world dataset demonstrate that the proposed approach outperforms the state-of-the-art methods with a satisfying accuracy improvement.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA010803,2009AA01Z311,2009AA01Z314)the National Natural Science Foundation of China(No.61304205,61203316,61272379,61103086,41301037)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20141002)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Jiangsu Ordinary University Science Research Project(No.13KJB120007)Innovation and Entrepreneurship Training Project of College Students(No.201410300153,201410300165)the Excellent Undergraduate Paper(design)Supporting Project of NUIST
文摘To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.
基金Supported by the National Natural Science Foundation of China under Grant No.1143505sponsored by K.C.Wong Magna Fund in Ningbo University
文摘The(2 + 1)-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable(2 + 1)-dimensional Ito equation contains lump solutions and interaction solutions between lump and stripe solitons. The result shows that the lump soliton will be swallowed or arisen by a stripe soliton in a fixed time. Furthermore, by the interaction between a lump and a paired resonant stripe soliton, the lump will be transformed to an instanton or a rogue wave.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.
基金This work was supported by the Basic Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)under Grant 2019R1F1A1045329 and Grant 2020R1A4A1017775.
文摘Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems.However,previous gaze estimation techniques generally work only in a controlled laboratory environment because they require a number of high-resolution eye images.This makes them unsuitable for welfare and healthcare facilities with the following challenging characteristics:1)users’continuous movements,2)various lighting conditions,and 3)a limited amount of available data.To address these issues,we introduce a multi-view multi-modal head-gaze estimation system that translates the user’s head orientation into the gaze direction.The proposed system captures the user using multiple cameras with depth and infrared modalities to train more robust gaze estimators under the aforementioned conditions.To this end,we implemented a deep learning pipeline that can handle different types and combinations of data.The proposed system was evaluated using the data collected from 10 volunteer participants to analyze how the use of single/multiple cameras and modalities affect the performance of head-gaze estimators.Through various experiments,we found that 1)an infrared-modality provides more useful features than a depth-modality,2)multi-view multi-modal approaches provide better accuracy than singleview single-modal approaches,and 3)the proposed estimators achieve a high inference efficiency that can be used in real-time applications.
文摘Artificial entities,such as virtual agents,have become more pervasive.Their long-term presence among humans requires the virtual agent’s ability to express appropriate emotions to elicit the necessary empathy from the users.Affective empathy involves behavioral mimicry,a synchronized co-movement between dyadic pairs.However,the characteristics of such synchrony between humans and virtual agents remain unclear in empathic interactions.Our study evaluates the participant’s behavioral synchronization when a virtual agent exhibits an emotional expression congruent with the emotional context through facial expressions,behavioral gestures,and voice.Participants viewed an emotion-eliciting video stimulus(negative or positive)with a virtual agent.The participants then conversed with the virtual agent about the video,such as how the participant felt about the content.The virtual agent expressed emotions congruent with the video or neutral emotion during the dialog.The participants’facial expressions,such as the facial expressive intensity and facial muscle movement,were measured during the dialog using a camera.The results showed the participants’significant behavioral synchronization(i.e.,cosine similarity≥.05)in both the negative and positive emotion conditions,evident in the participant’s facial mimicry with the virtual agent.Additionally,the participants’facial expressions,both movement and intensity,were significantly stronger in the emotional virtual agent than in the neutral virtual agent.In particular,we found that the facial muscle intensity of AU45(Blink)is an effective index to assess the participant’s synchronization that differs by the individual’s empathic capability(low,mid,high).Based on the results,we suggest an appraisal criterion to provide empirical conditions to validate empathic interaction based on the facial expression measures.