Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common d...Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common dilemmas,which realize highprecision and stable touch detection but are rigid,bulky,and thick or achieve high flexibility to wear but lose precision.Here,we construct highly bending-insensitive,unpixelated,and waterproof epidermal interfaces(BUW epidermal interfaces)and demonstrate their interactive applications of conformal human–machine integration.The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection,high flexibility,rapid response time,excellent stability,and versatile“cut-and-paste”character.Regardless of whether being flat or bent,the BUW epidermal interface can be conformally attached to the human skin for real-time,comfortable,and unrestrained interactions.This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics,which offers a new technology route and may further broaden human–machine interactions toward metaverse.展开更多
1.Introduction The real question is not whether machines think but whether men do.Burrhus Frederic Skineer Dedicated manufacturing systems are fading out as future manufacturing(i.e.,Industry 4.0[1])demands ultra-flex...1.Introduction The real question is not whether machines think but whether men do.Burrhus Frederic Skineer Dedicated manufacturing systems are fading out as future manufacturing(i.e.,Industry 4.0[1])demands ultra-flexible smart manufacturing systems that can self-adapt to production process changes resulting from the varied batch sizes of personalized products[2–4].The manufacturing shop-floor can become an unstructured environment where manufacturing systems and processes change their configurations dynamically via adaptive near-real-time decision-making.One emerging trend to make manufacturing flexible and reconfigurable is to introduce collaborative machines that work alongside humans with high productivity[5-7].展开更多
OBJECTIVE:To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine(TCM),and further support the registration of new TCM drugs.METHODS:Generalized Boosted Models ...OBJECTIVE:To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine(TCM),and further support the registration of new TCM drugs.METHODS:Generalized Boosted Models and XGBoost were employed to construct a classification model to identify the bad prognosis factors in resistant hypertension(RH)patients.Furthermore,we used association analysis to explore the rules of"symptomsyndrome"and"symptom-herb"for the major influencing factors,in order to summarize prescription pattern and applicable patients of TCM.RESULTS:Patients with major adverse cardiac events mostly have complex symptoms of phlegm,stasis,deficiency and fire intermingled with each other,and finally summarized the human experience of using Chinese herbal medicine to precisely intervene in some symptoms of RH patients on the basis of conventional Western medical treatment.CONCLUSIONS:Machine learning algorithms can make full use of human use experience and evidence to save clinical trial resources and accelerate the development of TCM varieties.展开更多
The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties li...The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.展开更多
Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded ...Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded by Prof.Yan-Qing Lu and Prof.Guangming Tao presents a methodical approach to surmount the limitations in photochromic fibers.They integrated controllable photochromic fibers into various wearable devices,providing a promising path for future exploration and advancement in the field of human–machine interaction.展开更多
Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el...Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite...The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.展开更多
With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase t...With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.展开更多
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily ...Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.展开更多
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide...Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ...Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.展开更多
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr...Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.展开更多
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac...The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.展开更多
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
Recent studies have shown that synergistic precipitation of continuous precipitates(CPs)and discontinuous precipitates(DPs)is a promising method to simultaneously improve the strength and electrical conductivity of Cu...Recent studies have shown that synergistic precipitation of continuous precipitates(CPs)and discontinuous precipitates(DPs)is a promising method to simultaneously improve the strength and electrical conductivity of Cu-Ni-Si alloy.However,the complex relationship between precipitates and two-stage aging process presents a significant challenge for the optimization of process parameters.In this study,machine learning models were established based on orthogonal experiment to mine the relationship between two-stage aging parameters and properties of Cu-5.3Ni-1.3Si-0.12Nb alloy with preferred formation of DPs.Two-stage aging parameters of 400℃/75 min+400℃/30 min were then obtained by multi-objective optimization combined with an experimental iteration strategy,resulting in a tensile strength of 875 MPa and a conductivity of 41.43%IACS,respectively.Such an excellent comprehensive performance of the alloy is attributed to the combined precipitation of DPs and CPs(with a total volume fraction of 5.4%and a volume ratio of CPs to DPs of 6.7).This study could provide a new approach and insight for improving the comprehensive properties of the Cu-Ni-Si alloys.展开更多
To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.Howeve...To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.展开更多
Integrating exhaled breath analysis into the diagnosis of cardiovascular diseases holds significant promise as a valuable tool for future clinical use,particularly for ischemic heart disease(IHD).However,current resea...Integrating exhaled breath analysis into the diagnosis of cardiovascular diseases holds significant promise as a valuable tool for future clinical use,particularly for ischemic heart disease(IHD).However,current research on the volatilome(exhaled breath composition)in heart disease remains underexplored and lacks sufficient evidence to confirm its clinical validity.Key challenges hindering the application of breath analysis in diagnosing IHD include the scarcity of studies(only three published papers to date),substantial methodological bias in two of these studies,and the absence of standardized protocols for clinical imple-mentation.Additionally,inconsistencies in methodologies—such as sample collection,analytical techniques,machine learning(ML)approaches,and result interpretation—vary widely across studies,further complicating their reprodu-cibility and comparability.To address these gaps,there is an urgent need to establish unified guidelines that define best practices for breath sample collection,data analysis,ML integration,and biomarker annotation.Until these challenges are systematically resolved,the widespread adoption of exhaled breath analysis as a reliable diagnostic tool for IHD remains a distant goal rather than an immi-nent reality.展开更多
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat...BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.展开更多
基金supported by National Natural Science Foundation of China(52202117,52232006,52072029,and 12102256)Collaborative Innovation Platform Project of Fu-Xia-Quan National Independent Innovation Demonstration Zone(3502ZCQXT2022005)+3 种基金Natural Science Foundation of Fujian Province of China(2022J01065)State Key Lab of Advanced Metals and Materials(2022-Z09)Fundamental Research Funds for the Central Universities(20720220075)the Ministry of Education,Singapore,under its MOE ARF Tier 2(MOE2019-T2-2-179).
文摘Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common dilemmas,which realize highprecision and stable touch detection but are rigid,bulky,and thick or achieve high flexibility to wear but lose precision.Here,we construct highly bending-insensitive,unpixelated,and waterproof epidermal interfaces(BUW epidermal interfaces)and demonstrate their interactive applications of conformal human–machine integration.The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection,high flexibility,rapid response time,excellent stability,and versatile“cut-and-paste”character.Regardless of whether being flat or bent,the BUW epidermal interface can be conformally attached to the human skin for real-time,comfortable,and unrestrained interactions.This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics,which offers a new technology route and may further broaden human–machine interactions toward metaverse.
基金supported by grants from The University of Auckland FRDF New Staff Research Fund(3720540).
文摘1.Introduction The real question is not whether machines think but whether men do.Burrhus Frederic Skineer Dedicated manufacturing systems are fading out as future manufacturing(i.e.,Industry 4.0[1])demands ultra-flexible smart manufacturing systems that can self-adapt to production process changes resulting from the varied batch sizes of personalized products[2–4].The manufacturing shop-floor can become an unstructured environment where manufacturing systems and processes change their configurations dynamically via adaptive near-real-time decision-making.One emerging trend to make manufacturing flexible and reconfigurable is to introduce collaborative machines that work alongside humans with high productivity[5-7].
基金the China Academy of Chinese Medical Sciences,Independent Topic Project:Application Research on Named Entity Recognition and Relationship Extraction of Case Records of Renowned Traditional Chinese Medicine Practitioners(No.Z0643).China Academy of Chinese Medical Sciences,Independent Topic Project:Analysis of Research Directions and Scope in the Discipline of Traditional Chinese Medicine Statistics(No.Z0723)China Academy of Chinese Medical Sciences,Science and Technology Innovation Project:Real-world Effectiveness Evaluation of Traditional Chinese Medicine and Translational Application Research on Causal Inference(No.CI2021A04706).China Academy of Chinese Medical Sciences,Science and Technology Innovation Project:Research on Causal Inference Methodology for Real-world Clinical Evaluation in Traditional Chinese Medicine(No.CI2021B003)National Key Research and Development Program of China:Integrated Evaluation Model and Key Technologies of"Syndrome-Disease-Prescription"for Traditional Chinese Medicine in the Prevention and Treatment of Coronary Heart Disease—Statistical Data Analysis and Data Mining(No.2017YFC1700406-2)。
文摘OBJECTIVE:To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine(TCM),and further support the registration of new TCM drugs.METHODS:Generalized Boosted Models and XGBoost were employed to construct a classification model to identify the bad prognosis factors in resistant hypertension(RH)patients.Furthermore,we used association analysis to explore the rules of"symptomsyndrome"and"symptom-herb"for the major influencing factors,in order to summarize prescription pattern and applicable patients of TCM.RESULTS:Patients with major adverse cardiac events mostly have complex symptoms of phlegm,stasis,deficiency and fire intermingled with each other,and finally summarized the human experience of using Chinese herbal medicine to precisely intervene in some symptoms of RH patients on the basis of conventional Western medical treatment.CONCLUSIONS:Machine learning algorithms can make full use of human use experience and evidence to save clinical trial resources and accelerate the development of TCM varieties.
基金support.J.C.also acknowledges the Hellman Fellows Research Grant,the UCLA Pandemic Resources Program Research Award,the Research Recovery Grant by the UCLA Academic Senate,and the Brain&Behavior Research Foundation Young Investigator Grant(Grant Number:30944)the Catalyzing Pediatric Innovation Grant(Grant Number:47744)from the West Coast Consortium for Technology&Innovation in Pediatrics,Children’s Hospital Los Angeles.
文摘The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.
文摘Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded by Prof.Yan-Qing Lu and Prof.Guangming Tao presents a methodical approach to surmount the limitations in photochromic fibers.They integrated controllable photochromic fibers into various wearable devices,providing a promising path for future exploration and advancement in the field of human–machine interaction.
基金Supported by National Natural Science Foundation of China(NSFC)(Grant No.52130505)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD24E050005)+1 种基金Ningbo Key Scientific and Technological Project of China(Grant No.2022Z040)Academic Excellence Foundation of BUAA for PhD Students.
文摘Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金the National Key Research and Development Program of China(2021YFC2900300)the Natural Science Foundation of Guangdong Province(2024A1515030216)+2 种基金MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202437)the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Third Xinjiang Scientific Expedition Program(2022xjkk1301).
文摘The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.
基金supported by the National Key R&D Program of China(No.2022YFE0109500)the National Natural Science Foundation of China(Nos.52071255,52301250,52171190 and 12304027)+2 种基金the Key R&D Project of Shaanxi Province(No.2022GXLH-01-07)the Fundamental Research Funds for the Central Universities(China)the World-Class Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central Universities.
文摘With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.
基金supported by the National Key Research and Development Program of China(No.2020YFC1808701).
文摘Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.
基金supported by the National Key Research and Development Plan of the Ministry of Science and Technology,China(Grant No.:2022YFE0125300)the National Natural Science Foundation of China(Grant No:81690262)+2 种基金the National Science and Technology Major Project,China(Grant No.:2017ZX09201004-021)the Open Project of National facility for Translational Medicine(Shanghai),China(Grant No.:TMSK-2021-104)Shanghai Jiao Tong University STAR Grant,China(Grant Nos.:YG2022ZD024 and YG2022QN111).
文摘Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2682024GF019)。
文摘Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
基金funded by the National Science and Technology Council,Taiwan(Grant No.NSTC 112-2121-M-039-001)by China Medical University(Grant No.CMU112-MF-79).
文摘Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
基金supported by the National Natural Science Foundation of China(No.U21A20290)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011656)+2 种基金the Projects of Talents Recruitment of GDUPT(No.2023rcyj1003)the 2022“Sail Plan”Project of Maoming Green Chemical Industry Research Institute(No.MMGCIRI2022YFJH-Y-024)Maoming Science and Technology Project(No.2023382).
文摘The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
基金financially supported by the National Key Research and Development Program of China(No.2023YFB3812601)the National Natural Science Foundation of China(Nos.51925401,92066205 and 92266301)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Recent studies have shown that synergistic precipitation of continuous precipitates(CPs)and discontinuous precipitates(DPs)is a promising method to simultaneously improve the strength and electrical conductivity of Cu-Ni-Si alloy.However,the complex relationship between precipitates and two-stage aging process presents a significant challenge for the optimization of process parameters.In this study,machine learning models were established based on orthogonal experiment to mine the relationship between two-stage aging parameters and properties of Cu-5.3Ni-1.3Si-0.12Nb alloy with preferred formation of DPs.Two-stage aging parameters of 400℃/75 min+400℃/30 min were then obtained by multi-objective optimization combined with an experimental iteration strategy,resulting in a tensile strength of 875 MPa and a conductivity of 41.43%IACS,respectively.Such an excellent comprehensive performance of the alloy is attributed to the combined precipitation of DPs and CPs(with a total volume fraction of 5.4%and a volume ratio of CPs to DPs of 6.7).This study could provide a new approach and insight for improving the comprehensive properties of the Cu-Ni-Si alloys.
基金supported by the National Natural Science Foundation of China(No.22276139)the Shanghai’s Municipal State-owned Assets Supervision and Administration Commission(No.2022028).
文摘To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.
基金Supported by The government assignment,No.1023022600020-6The Ministry of Science and Higher Education of the Russian Federation Within The Framework of State Support for The Creation and Development of World-Class Research Center“Digital Biodesign and Personalized Healthcare,”No.075-15-2022-304RSF grant,No.24-15-00549.
文摘Integrating exhaled breath analysis into the diagnosis of cardiovascular diseases holds significant promise as a valuable tool for future clinical use,particularly for ischemic heart disease(IHD).However,current research on the volatilome(exhaled breath composition)in heart disease remains underexplored and lacks sufficient evidence to confirm its clinical validity.Key challenges hindering the application of breath analysis in diagnosing IHD include the scarcity of studies(only three published papers to date),substantial methodological bias in two of these studies,and the absence of standardized protocols for clinical imple-mentation.Additionally,inconsistencies in methodologies—such as sample collection,analytical techniques,machine learning(ML)approaches,and result interpretation—vary widely across studies,further complicating their reprodu-cibility and comparability.To address these gaps,there is an urgent need to establish unified guidelines that define best practices for breath sample collection,data analysis,ML integration,and biomarker annotation.Until these challenges are systematically resolved,the widespread adoption of exhaled breath analysis as a reliable diagnostic tool for IHD remains a distant goal rather than an immi-nent reality.
基金Supported by National Key Research and Development Program,No.2022YFC2407304Major Research Project for Middle-Aged and Young Scientists of Fujian Provincial Health Commission,No.2021ZQNZD013+2 种基金The National Natural Science Foundation of China,No.62275050Fujian Province Science and Technology Innovation Joint Fund Project,No.2019Y9108Major Science and Technology Projects of Fujian Province,No.2021YZ036017.
文摘BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.