期刊文献+
共找到83,410篇文章
< 1 2 250 >
每页显示 20 50 100
Consistency and normality of Huber-Dutter estimators for partial linear model 被引量:3
1
作者 TONG XingWei CUI HengJian YU Peng 《Science China Mathematics》 SCIE 2008年第10期1831-1842,共12页
For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 ... For partial linear model Y = X τ β 0 + g 0(T) + ∈ with unknown β 0 ∈ ? d and an unknown smooth function g 0, this paper considers the Huber-Dutter estimators of β 0, scale σ for the errors and the function g 0 approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of β 0 and σ are shown to be asymptotically normal with the rate of convergence n ?1/2 and the B-spline Huber-Dutter estimator of g 0 achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of β 0 is competitive with its M-estimator without scale parameter and the ordinary least square estimator. 展开更多
关键词 huber-dutter estimator partial linear model B-spline function 62F12
原文传递
Asymptotics of Huber-Dutter Estimators for Partial Linear Model with Nonstochastic Designs
2
作者 Xing-weiTong Heng-jianCui HuiZhao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第2期257-268,共12页
For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 res... For partial linear model Y = X~τβ_0 + g_0(T) + ε with unknown β_0 ∈ R^dand an unknown smooth function g_0, this paper considers the Huber-Dutter estimators of β_0, scaleσ for the errors and the function g_0 respectively, in which the smoothing B-spline function isused. Under some regular conditions, it is shown that the Huber-Dutter estimators of β_0 and σ areasymptotically normal with convergence rate n^(-1/2) and the B-spline Huber-Dutter estimator of g_0achieves the optimal convergence rate in nonparametric regression. A simulation study demonstratesthat the Huber-Dutter estimator of β_0 is competitive with its M-estimator without scale parameterand the ordinary least square estimator. An example is presented after the simulation study. 展开更多
关键词 huber-dutter estimator partial linear model M-estimator optimalconvergence rate B-spline function
原文传递
A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation 被引量:1
3
作者 Hamza Murad Khan Anwar Khan +3 位作者 Santos Gracia Villar Luis Alonso DzulLopez Abdulaziz Almaleh Abdullah M.Al-Qahtani 《Computers, Materials & Continua》 2025年第5期3369-3388,共20页
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models... Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes. 展开更多
关键词 Short-term traffic prediction sequential time series prediction TPE tree-structured parzen estimator LSTM hyperparameter tuning hybrid prediction model
在线阅读 下载PDF
Distributed predefined-time estimator-based affine formation target-enclosing maneuver control for cooperative underactuated quadrotor UAVs with fault-tolerant capabilities
4
作者 Yang XU Yuanfang QU +2 位作者 Delin LUO Haibin DUAN Zhengyu GUO 《Chinese Journal of Aeronautics》 2025年第1期471-490,共20页
The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer... The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations. 展开更多
关键词 Affine formation maneuver control Target tracking Fixed-time control Quadrotor unmanned aerial vehicle Target enclosing Predefined-time estimation
原文传递
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system 被引量:1
5
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection Model predictive control Uncertainty and disturbance estimator Nonlinear system
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
6
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
Asymptotic normality of error density estimator in stationary and explosive autoregressive models
7
作者 WU Shi-peng YANG Wen-zhi +1 位作者 GAO Min HU Shu-he 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期140-158,共19页
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity... In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors. 展开更多
关键词 explosive autoregressive models residual density estimator asymptotic distribution association sequence
在线阅读 下载PDF
On convergence of covariance matrix of empirical Bayes hyper-parameter estimator
8
作者 Yue Ju Biqiang Mu Tianshi Chen 《Control Theory and Technology》 EI CSCD 2024年第2期149-162,共14页
Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as t... Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to infinity.In this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been given.However,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is required.In general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance matrix.Thus,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter estimator.In this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting distribution.Moreover,we run numerical simulations to demonstrate the efficacy of ourtheoretical results. 展开更多
关键词 Regularized system identification Hyper-parameter estimator Empirical Bayes Convergence of covariance matrix
原文传递
NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES
9
作者 韩月才 张丁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期143-160,共18页
We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces... We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology. 展开更多
关键词 reflected stochastic differential equation discretely observed process continuously observed process Nadaraya-Watson estimator asymptotic behavior
在线阅读 下载PDF
Brain age estimation:premise,promise,and problems
10
作者 Jarrad Perron Ji Hyun Ko 《Neural Regeneration Research》 SCIE CAS 2025年第8期2313-2314,共2页
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou... Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders. 展开更多
关键词 estimATION providing BIRTH
暂未订购
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
11
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
12
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
SPADE:A spatial information assisted collision distance estimator for robotic arm
13
作者 Jiakang Zhou Yue Cao +1 位作者 Yu-Xuan Ren Steve Feng Shu 《Journal of Automation and Intelligence》 2024年第4期250-259,共10页
The movement of a robotic arm in the working environment requires efficient and adequate motion planning.The procedure of collision detection based on the object geometry is crucial to plan the motion trajectories,and... The movement of a robotic arm in the working environment requires efficient and adequate motion planning.The procedure of collision detection based on the object geometry is crucial to plan the motion trajectories,and usually requires intensive resource and considerable time.Many learning-based collision detection schemes have been developed to improve the efficiency of collision detection.However,current learning-based collision detection methods are either not accurate enough or prone to low efficiency.We propose a simple,yet highly accurate collision distance estimator,a spatial information assisted distance estimator,i.e.,SPADE,in which spatial information of both robotic arms and obstacles are encoded by multiple encoders.With evaluation in both static and dynamic environments,our model shows higher prediction accuracy than multiple baselines,and higher accuracy can be corroborated by experiment with our model under the premise of equal inference efficiency.In addition,our model shows better robustness than baseline in real-world path planning. 展开更多
关键词 Collision detection Collision distance estimation Neural networks Multiple encoders
在线阅读 下载PDF
Improving DOA estimation of GNSS interference through sparse non-uniform array reconfiguration 被引量:1
14
作者 Rongling LANG Hao XU +3 位作者 Fei GAO Zewen TANG Zhipeng WANG Amir HUSSAIN 《Chinese Journal of Aeronautics》 2025年第8期104-118,共15页
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa... Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation. 展开更多
关键词 GNSS interference location Direction of arrival estimation Adaptive reconfigurable array Cramér-Raobound Quadratic fractional programming
原文传递
Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation
15
作者 Ange Chen Chengdong Wu Chuanjiang Leng 《Computers, Materials & Continua》 SCIE EI 2025年第1期173-191,共19页
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s... Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy. 展开更多
关键词 3D human pose estimation multi-view skeleton graph elaborate graph convolution operation Hourglass-GCN
在线阅读 下载PDF
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
16
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Sensitivity-based state and parameter moving horizon estimation method for liquid propellant rocket engine
17
作者 Zizhao WANG Dan WANG +2 位作者 Hongyu CHEN Zhijiang SHAO Zhengyu SONG 《Chinese Journal of Aeronautics》 2025年第7期46-60,共15页
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar... The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods. 展开更多
关键词 Sensitivity Moving horizon estimation Noise covariance estimation Parameter estimation Liquid propellant rocket engine
原文传递
Reliability Performance Estimation and Its Applications of Rate-Compatible Polar Codes for B5G-IoT
18
作者 Liang Hao Liang Xiaohu +2 位作者 Ye Ganhua Lu Ruimin Lu Xinjin 《China Communications》 2025年第7期124-137,共14页
The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction perform... The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction performance of channel coding functions as a significant way of optimizing the transmission reliability and efficiency.In this paper,the efficient estimation methods of the block error rate(BLER)performance for rate-compatible polar codes(RCPC)are proposed under several scenarios.Firstly,the BLER performance of RCPC is generally evaluated in the additive white Gaussian noise channels.That is further extended into the Rayleigh fading channel case using an equivalent estimation method.Moreover,with respect to the powerful decoder such as successive cancellation list decoding,the performance estimation is derived analytically based on the polar weight spectrum and BLER upper bounds.Theoretical evaluation and numerical simulation results show that the estimated performance can fit well the practical simulated results of RCPC under the objective conditions,verifying the validity of our proposed performance estimation methods.Furthermore,the application designs of the reliability estimation of RCPC are explored,particularly in the advantages of the signal-to-noise(SNR)estimation and throughput efficiency optimization of polar coded hybrid automatic repeat request. 展开更多
关键词 Internet of Things polar codes ratecompatible reliability estimation SNR estimation throughput optimization
在线阅读 下载PDF
STRICHARTZ AND SMOOTHING ESTIMATES FOR DISPERSIVE SEMI-GROUP e^(-itP(D)) IN WEIGHTED L^(2) SPACES AND THEIR APPLICATIONS
19
作者 Jiecheng CHEN Shaolei RU Chenjing WU 《Acta Mathematica Scientia》 2025年第2期401-415,共15页
Combining TT* argument and bilinear interpolation,this paper obtains the Strichartz and smoothing estimates of dispersive semigroup e^(-itP(D)) in weighted L^(2) spaces.Among other things,we recover the results in[1].... Combining TT* argument and bilinear interpolation,this paper obtains the Strichartz and smoothing estimates of dispersive semigroup e^(-itP(D)) in weighted L^(2) spaces.Among other things,we recover the results in[1].Moreover,the application of these results to the well-posedness of some equations are shown in the last section. 展开更多
关键词 Strichartz estimates smoothing estimates Morrey-Campanato class weighted L^(2)spaces WELL-POSEDNESS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部