目的建立一种液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)方法快速、灵敏地测定大鼠血浆中Hu7691的浓度。方法大鼠血浆样本以乙腈沉淀蛋白后,选用三键键合烷基色谱柱,以0.1%甲酸水-乙腈作为流动相进...目的建立一种液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)方法快速、灵敏地测定大鼠血浆中Hu7691的浓度。方法大鼠血浆样本以乙腈沉淀蛋白后,选用三键键合烷基色谱柱,以0.1%甲酸水-乙腈作为流动相进行梯度洗脱,选用多重反应监测扫描方式进行监测。将经验证的方法应用于Hu7691在SD大鼠体内的药动学研究。结果大鼠口服5、10、20 mg·kg^(-1)Hu7691以及静脉注射5 mg·kg^(-1)的Hu7691后,大鼠血浆中Hu7691的AUC和C_(max)随剂量的增大而增加,生物利用度分别为50.2%、62.0%、75.7%。结论表明Hu7691在大鼠体内具有较高的胃肠吸收率和稳定的药动学特性。展开更多
目的研究胸腰椎骨折患者DEXA(dual-energy X-ray absorptiometry,DEXA)所测BMD(bone mineral density,BMD)、T值(T-score)、腰椎HU值(hounsfield unit,HU)和改良VBQ(vertebral body quality,VBQ)评分的差异,并分析四者间的相关性以及BMD...目的研究胸腰椎骨折患者DEXA(dual-energy X-ray absorptiometry,DEXA)所测BMD(bone mineral density,BMD)、T值(T-score)、腰椎HU值(hounsfield unit,HU)和改良VBQ(vertebral body quality,VBQ)评分的差异,并分析四者间的相关性以及BMD、T值、腰椎HU值和改良VBQ评分在预测胸腰椎骨折的效能特点。方法收集2022年1月至2025年3月在昆明医科大学第二附属医院骨科行住院治疗的胸腰椎脆性骨折患者。将符合纳入标准的132例患者分为骨折组(n=63)与非骨折组(n=69),并分别在DEXA上记录L1~L4椎体BMD、T值,腰椎CT测量HU值,腰椎MRI(magnetic resonance imaging,MRI)测量计算VBQ评分。组间比较采用独立样本t检验,BMD、T值、HU值、改良VBQ评分四者之间的相关性采用Pearson's相关性检验,并用受试者工作曲线(receiver-operator curve,ROC)分析其预测胸腰椎骨折的效能。结果骨折组患者中L1~L4的平均BMD、T值、HU值均低于非骨折组,而改良VBQ评分高于非骨折组,两组之间均存在显著差异(P<0.001)。相关性分析中,L1~L4的BMD、T值与L1~L4 HU值呈显著正相关(P<0.001),L1~L4的BMD、T值、L1~L4HU值三者与改良VBQ评分之间呈显著负相关(P<0.001)。L1~L4平均T值、BMD、HU值和改良VBQ评分预测胸腰椎骨折的AUC值分别为0.826、0.836、0.759、0.875,其分别对应最佳阈值为T值(-1.65)、BMD(0.836)、HU值(68.4)、改良VBQ评分(3.01)。结论L1~L4椎体BMD、T值、HU值和改良VBQ评分四者之间相关性显著,都可以作为预测胸腰椎骨折效能的指标,其中改良VBQ评分预测表现最好,是良好的椎体骨质量评估辅助手段。展开更多
Hu sheep is an indigenous breed from the Taihu Lake Plain in China,known for its high fertility.Although Hu sheep belong to the Mongolian group,their demographic history and genetic architecture remain inconclusive.He...Hu sheep is an indigenous breed from the Taihu Lake Plain in China,known for its high fertility.Although Hu sheep belong to the Mongolian group,their demographic history and genetic architecture remain inconclusive.Here,we analyze 697 sheep genomes from representatives of Mongolian sheep breeds.Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago.As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago,they developed a unique genetic foundation and phenotypic characteristics,which are evident in the genomic footprints of selective sweeps and structural variation landscape.Genes associated with reproductive traits(BMPR1B and TDRD10)and horn phenotype(RXFP2)exhibit notable selective sweeps in the genome of Hu sheep.A genome-wide association analysis reveals that structural variations at LOC101110773,MAST2,and ZNF385B may significantly impact polledness,teat number,and early growth in Hu sheep,respectively.Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep.展开更多
Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from H...Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from Hebei Province in China,Hu arrived in Singapore in 1994 as one of the first technical professionals dispatched by China.Since then,he has built a life and career firmly rooted in Singapore.Over more than four years at China Construction(South Pacific)Development Co Pte Ltd,he rose through the ranks from project engineer to site manager and eventually project director.In 1999,he left the company to start his own business,setting up a construction firm with several partners.His focus shifted to real estate in 2007,when he co-founded JVA Venture Pte Ltd.展开更多
The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization.Hu sheep are a local sheep breed unique to China with high reproductive rates ...The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization.Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth.Genomic selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock.Here,we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep(Asiatic mouflon)to investigate the genetic characteristics and selection signatures of Hu sheep.Based on six signatures of selection approaches,we detect genomic regions containing genes related to reproduction(BMPR1B,BMP2,PGFS,CYP19,CAMK4,GGT5,and GNAQ),vision(ALDH1A2,SAG,and PDE6B),nervous system(NAV1),and immune response(GPR35,SH2B2,PIK3R3,and HRAS).Association analysis with a population of 1299 Hu sheep reveals that those missense mutations in the GPR35(GPR35 g.952651 A>G;GPR35 g.952496 C>T)and NAV1(NAV1 g.84216190 C>T;NAV1 g.84227412 G>A)genes are significantly associated(P<0.05)with immune and growth traits in Hu sheep,respectively.This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.展开更多
Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is imp...Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.展开更多
For positive integers k and r,a(k,r)-coloring of graph G is a proper vertex k-coloring of G such that the neighbors of any vertex v∈V(G)receive at least min{d_(G)(v),r}different colors.The r-hued chromatic number of ...For positive integers k and r,a(k,r)-coloring of graph G is a proper vertex k-coloring of G such that the neighbors of any vertex v∈V(G)receive at least min{d_(G)(v),r}different colors.The r-hued chromatic number of G,denoted χ_(r)(G),is the smallest integer k such that G admits a(k,r)-coloring.Let Q_(n) be the n-dimensional hypercube.For any integers n and r with n≥2 and 2≤r≤5,we investigated the behavior of χ_(r)(Q_(n)),and determined the exact value of χ_(2)(Q_(n))and χ_(3)(Q_(n))for all positive integers n.展开更多
基金supported by grants from the Zhejiang Science and Technology Department Project(2023C04004)Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding(2021C02068-6)+2 种基金Department of Science Technology of Huzhou City(2023GZ33)Zhejiang Team Technology Ambassador Project(Tongxiang)the National Natural Science Foundation of China(32172724).
文摘Hu sheep is an indigenous breed from the Taihu Lake Plain in China,known for its high fertility.Although Hu sheep belong to the Mongolian group,their demographic history and genetic architecture remain inconclusive.Here,we analyze 697 sheep genomes from representatives of Mongolian sheep breeds.Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago.As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago,they developed a unique genetic foundation and phenotypic characteristics,which are evident in the genomic footprints of selective sweeps and structural variation landscape.Genes associated with reproductive traits(BMPR1B and TDRD10)and horn phenotype(RXFP2)exhibit notable selective sweeps in the genome of Hu sheep.A genome-wide association analysis reveals that structural variations at LOC101110773,MAST2,and ZNF385B may significantly impact polledness,teat number,and early growth in Hu sheep,respectively.Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep.
文摘Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from Hebei Province in China,Hu arrived in Singapore in 1994 as one of the first technical professionals dispatched by China.Since then,he has built a life and career firmly rooted in Singapore.Over more than four years at China Construction(South Pacific)Development Co Pte Ltd,he rose through the ranks from project engineer to site manager and eventually project director.In 1999,he left the company to start his own business,setting up a construction firm with several partners.His focus shifted to real estate in 2007,when he co-founded JVA Venture Pte Ltd.
基金supported by the National Key Research and Development Program of China(2021YFD1300901,2022YFD1302000)National Natural Science Foundation of China(32260818,31960653)。
文摘The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization.Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth.Genomic selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock.Here,we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep(Asiatic mouflon)to investigate the genetic characteristics and selection signatures of Hu sheep.Based on six signatures of selection approaches,we detect genomic regions containing genes related to reproduction(BMPR1B,BMP2,PGFS,CYP19,CAMK4,GGT5,and GNAQ),vision(ALDH1A2,SAG,and PDE6B),nervous system(NAV1),and immune response(GPR35,SH2B2,PIK3R3,and HRAS).Association analysis with a population of 1299 Hu sheep reveals that those missense mutations in the GPR35(GPR35 g.952651 A>G;GPR35 g.952496 C>T)and NAV1(NAV1 g.84216190 C>T;NAV1 g.84227412 G>A)genes are significantly associated(P<0.05)with immune and growth traits in Hu sheep,respectively.This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.
基金supported by the mutton sheep industry technology system construction project of Shaanxi Province(NYKJ-2021-YL(XN)43).
文摘Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Spanning connectivity and supereulerian properties of graphs”(2022D01C410).
文摘For positive integers k and r,a(k,r)-coloring of graph G is a proper vertex k-coloring of G such that the neighbors of any vertex v∈V(G)receive at least min{d_(G)(v),r}different colors.The r-hued chromatic number of G,denoted χ_(r)(G),is the smallest integer k such that G admits a(k,r)-coloring.Let Q_(n) be the n-dimensional hypercube.For any integers n and r with n≥2 and 2≤r≤5,we investigated the behavior of χ_(r)(Q_(n)),and determined the exact value of χ_(2)(Q_(n))and χ_(3)(Q_(n))for all positive integers n.