The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by ...In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.展开更多
The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these...The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these structures.Scientific imagery combined with artistic expression can further expand the potential of imaging in educational dissemination and interdisciplinary applications.展开更多
Functional gene arrays(FGAs)are a special type of microarrays containing probes for key genes involved in microbial functional processes,such as biogeochemical cycling of carbon,nitrogen,sulfur,phosphorus,and metals,b...Functional gene arrays(FGAs)are a special type of microarrays containing probes for key genes involved in microbial functional processes,such as biogeochemical cycling of carbon,nitrogen,sulfur,phosphorus,and metals,biodegradation of environmental contaminants,energy processing,and stress responses.GeoChips are considered as the most comprehensive FGAs.Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval,probe design and verification,array construction,data analysis,and automatic update are used to develop the GeoChip technology.GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid,specific,sensitive,and quantitative analysis of microbial communities in a high-throughput manner.Several generations of GeoChip have been developed and applied to investigate the functional diversity,composition,structure,function,and dynamics of a variety of microbial communities from different habitats,such as water,soil,marine,bioreactor,human microbiome,and extreme ecosystems.GeoChip is able to address fundamental questions related to global change,bioenergy,bioremediation,agricultural operation,land use,human health,environmental restoration,and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning.展开更多
Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determi...Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determining multifunctionality in structurally complex subtropical forests relative to other regulators(e.g.,soil microbial diversity,stand structure,and environmental conditions)remains uncertain.In this study,effects of aboveground(species richness and functional and structural diversity)and belowground(bacterial and fungal diversity)biodiversity,functional composition(community-weighted means of species traits),stand structure(diameter at breast height and stand density),and soil factors(pH and bulk density)on multifunctionality(including biomass production,carbon stock,and nutrient cycling)were examined along a tree diversity gradient in subtropical forests.The community-weighted mean of tree maximum height was the best predictor of ecosystem multifunctionality.Functional diversity explained a higher proportion of the variation in multifunctionality than that of species richness and fungal diversity.Stand structure-played an important role in modulating the effects of tree diversity on multifunctionality.The work highlights that species composition and maximizing forest structural complexity are effective strategies to increase forest multifunctionality while also conserving biodiversity in the management of multifunctional forests under global environmental changes.展开更多
A partition of unity level set method with moving knot Compactly Supported Radial Basis Functions(CS-RBFs)is proposed for optimizing variable stiffness composite structures.The iso-contours of a level set function are...A partition of unity level set method with moving knot Compactly Supported Radial Basis Functions(CS-RBFs)is proposed for optimizing variable stiffness composite structures.The iso-contours of a level set function are utilized to represent the curved fiber paths,and the tan-gent vector of the iso-contour defines the orientation of fiber.The level set function of the full design domain is constructed according to the Partition of Unity(POU)method by a set of local level set functions defined on an array of overlapping subdomains,and they are constructed by using the CS-RBFs.The positions of knots are iteratively changed during the optimization to improve the performance of composite structures.Several examples of compliance minimization are presented.展开更多
Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrate...Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO_2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some exten...展开更多
In this manuscript,Eshelby tensor is employed to assess the strain concentration that arises in the matrix phase at the interface,offering precise values and locations of maximum strain under specific loading conditio...In this manuscript,Eshelby tensor is employed to assess the strain concentration that arises in the matrix phase at the interface,offering precise values and locations of maximum strain under specific loading conditions for both spherical and cylindrical inclusions.When compared to numerical simulation results,the analytical predictions grounded in the Eshelby tensor exhibit satisfactory accuracy.Then an analytical calculation method based on Eshelby tensor for the elastic strain influence functions of reduced-order homogenization(ROH)method is developed and adopted on particle-reinforced and fibrous composites,presenting its feasibility and advantage on off-line stage calculation of ROH method.The error analyses between analytical and numerical results are conducted.The numerical results also exhibit the necessity of finer interface partitioning to obtain the response on micro-scale with higher resolution.展开更多
Functionally graded (FG) Al-SiCP composites fabricated via centrifugal casting are widely used in automobile components particularly a brake rotor disc be-cause of its high SiC fraction at the outer periphery. However...Functionally graded (FG) Al-SiCP composites fabricated via centrifugal casting are widely used in automobile components particularly a brake rotor disc be-cause of its high SiC fraction at the outer periphery. However, when operated in corrosive environment like road deicing salts the disc is highly sensitive to the corrosion due to high SiC fraction. But, the nanocrystalline (NC) structured surfaces synthesized by severe plastic deformation (SPD) method have excel-lent wear and corrosion resistance at the surface. Therefore, shot peening (SP) as a SPD method conducted on one side of the stir casted FG Al composite having 10 wt% SiCP constant reinforcement in order to create NC structured surface. The SP treatment continued for 70 s and 140 s durations. Thereafter, the surface characteristics of the composite before and after SP were estimated by XRD and then the composites were tested by wear and corrosion tests. The results revealed that the SP for 140 s duration favors the induction of hardened layer, higher grain refinement (NC structure) and dislocation density which promotes the occurrence of high surface hardness, thus significantly improving its wear properties. However, higher dislocation density resulted from longer duration shown deterioration to the corrosion resistance. Whereas, the attained degree of NC structure is more pronounced over dislocation density resulted after 70 s SP duration, thereby composite showed excellent corrosion re-sistance. Thus, the composite with 70 s duration possessed excellent corrosion and relatively good wear properties too.展开更多
This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of m...This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of material, structural and technological foundations along the entire value chain are of central importance: From the light-weight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice. The development of the material included the requirement-oriented composition of a high-strength fine grained concrete with an integrated textile reinforcement, such as carbon knitted fabrics. Innovations in formwork solutions provide new possibilities for concrete constructions. So, a bionic optimized shape of the pavilion was developed, realized by four connected TRC-lightweight-shells. The thin-walled TRC-shells were manufactured with a formwork made of glass-fibre reinforced polymer (GFRP). An advantage of the GFRP-formwork is the freedom of design concerning the formwork shape. Moreover, an excellent concrete quality can be achieved, while the production of the precast concrete components is simple and efficient simultaneously. After the production the new TRC-shells were installed and assembled on the campus of TU-Chemnitz. A special feature of the research pavilions are the LED light strips integrated in the shell elements, providing homogeneous illumination.展开更多
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
基金supported by the National Natural Science Foundation of China(Nos.12061131013,11972276,1211101401,12172171,and 12102183)the State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics(No.MCMS-E-0520K02)+5 种基金the Fundamental Research Funds for the Central Universities of China(Nos.NE2020002 and NS2019007)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX210179)the National Natural Science Foundation of Jiangsu Province of China(No.BK20211176)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021Szvup061)the Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan(Shuangchuang Doctor Program,No.JSSCBS20210166)。
文摘In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.
基金supported by the Fundamental Research Funds for the Central Universities(No.226-2024-00038),China.
文摘The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these structures.Scientific imagery combined with artistic expression can further expand the potential of imaging in educational dissemination and interdisciplinary applications.
基金This work has been partially supported through contracts DE-SC0004601 and DE-AC02-05CH11231(as part of ENIGMA,a Scientific Focus Area)by the U.S.Department of Energy,Office of Science,Office of Biologic and Environmental Research,Genomics:GTL Foundational Science and Environmental Remediation Science Program(ERSP)Programs,and Oklahoma Applied Research Support(OARS),Oklahoma Center for the Advancement of Science and Technology(OCAST),the Oklahoma Bioenergy Center(OBC),and the State of Oklahoma through the Project AR062-034.
文摘Functional gene arrays(FGAs)are a special type of microarrays containing probes for key genes involved in microbial functional processes,such as biogeochemical cycling of carbon,nitrogen,sulfur,phosphorus,and metals,biodegradation of environmental contaminants,energy processing,and stress responses.GeoChips are considered as the most comprehensive FGAs.Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval,probe design and verification,array construction,data analysis,and automatic update are used to develop the GeoChip technology.GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid,specific,sensitive,and quantitative analysis of microbial communities in a high-throughput manner.Several generations of GeoChip have been developed and applied to investigate the functional diversity,composition,structure,function,and dynamics of a variety of microbial communities from different habitats,such as water,soil,marine,bioreactor,human microbiome,and extreme ecosystems.GeoChip is able to address fundamental questions related to global change,bioenergy,bioremediation,agricultural operation,land use,human health,environmental restoration,and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning.
基金financially supported by the National Natural Science Foundation of China(Nos.32071561 and 31870431)the Science and Technology Innovation Program of Hunan Province(No.2021RC3104)+1 种基金the Research Foundation of the Education Bureau of Hunan Province(No.19B586)the Huitong Forest Ecological Station Funds provided by the State Forestry and Grass Administration of China(No.2021132078)。
文摘Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determining multifunctionality in structurally complex subtropical forests relative to other regulators(e.g.,soil microbial diversity,stand structure,and environmental conditions)remains uncertain.In this study,effects of aboveground(species richness and functional and structural diversity)and belowground(bacterial and fungal diversity)biodiversity,functional composition(community-weighted means of species traits),stand structure(diameter at breast height and stand density),and soil factors(pH and bulk density)on multifunctionality(including biomass production,carbon stock,and nutrient cycling)were examined along a tree diversity gradient in subtropical forests.The community-weighted mean of tree maximum height was the best predictor of ecosystem multifunctionality.Functional diversity explained a higher proportion of the variation in multifunctionality than that of species richness and fungal diversity.Stand structure-played an important role in modulating the effects of tree diversity on multifunctionality.The work highlights that species composition and maximizing forest structural complexity are effective strategies to increase forest multifunctionality while also conserving biodiversity in the management of multifunctional forests under global environmental changes.
基金supported by the National Natural Science Foundation of China(No.51975227).
文摘A partition of unity level set method with moving knot Compactly Supported Radial Basis Functions(CS-RBFs)is proposed for optimizing variable stiffness composite structures.The iso-contours of a level set function are utilized to represent the curved fiber paths,and the tan-gent vector of the iso-contour defines the orientation of fiber.The level set function of the full design domain is constructed according to the Partition of Unity(POU)method by a set of local level set functions defined on an array of overlapping subdomains,and they are constructed by using the CS-RBFs.The positions of knots are iteratively changed during the optimization to improve the performance of composite structures.Several examples of compliance minimization are presented.
基金supported by the Hi-Tech Research and Development Program of China(863,No2006AA03Z562)
文摘Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO_2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some exten...
基金supported by the National Natural Science Foundation of China(Grant Nos.11988102 and 12172009)the National Key Research and Development Program of China(Grant No.2020YFA0710500)。
文摘In this manuscript,Eshelby tensor is employed to assess the strain concentration that arises in the matrix phase at the interface,offering precise values and locations of maximum strain under specific loading conditions for both spherical and cylindrical inclusions.When compared to numerical simulation results,the analytical predictions grounded in the Eshelby tensor exhibit satisfactory accuracy.Then an analytical calculation method based on Eshelby tensor for the elastic strain influence functions of reduced-order homogenization(ROH)method is developed and adopted on particle-reinforced and fibrous composites,presenting its feasibility and advantage on off-line stage calculation of ROH method.The error analyses between analytical and numerical results are conducted.The numerical results also exhibit the necessity of finer interface partitioning to obtain the response on micro-scale with higher resolution.
文摘Functionally graded (FG) Al-SiCP composites fabricated via centrifugal casting are widely used in automobile components particularly a brake rotor disc be-cause of its high SiC fraction at the outer periphery. However, when operated in corrosive environment like road deicing salts the disc is highly sensitive to the corrosion due to high SiC fraction. But, the nanocrystalline (NC) structured surfaces synthesized by severe plastic deformation (SPD) method have excel-lent wear and corrosion resistance at the surface. Therefore, shot peening (SP) as a SPD method conducted on one side of the stir casted FG Al composite having 10 wt% SiCP constant reinforcement in order to create NC structured surface. The SP treatment continued for 70 s and 140 s durations. Thereafter, the surface characteristics of the composite before and after SP were estimated by XRD and then the composites were tested by wear and corrosion tests. The results revealed that the SP for 140 s duration favors the induction of hardened layer, higher grain refinement (NC structure) and dislocation density which promotes the occurrence of high surface hardness, thus significantly improving its wear properties. However, higher dislocation density resulted from longer duration shown deterioration to the corrosion resistance. Whereas, the attained degree of NC structure is more pronounced over dislocation density resulted after 70 s SP duration, thereby composite showed excellent corrosion re-sistance. Thus, the composite with 70 s duration possessed excellent corrosion and relatively good wear properties too.
文摘This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of material, structural and technological foundations along the entire value chain are of central importance: From the light-weight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice. The development of the material included the requirement-oriented composition of a high-strength fine grained concrete with an integrated textile reinforcement, such as carbon knitted fabrics. Innovations in formwork solutions provide new possibilities for concrete constructions. So, a bionic optimized shape of the pavilion was developed, realized by four connected TRC-lightweight-shells. The thin-walled TRC-shells were manufactured with a formwork made of glass-fibre reinforced polymer (GFRP). An advantage of the GFRP-formwork is the freedom of design concerning the formwork shape. Moreover, an excellent concrete quality can be achieved, while the production of the precast concrete components is simple and efficient simultaneously. After the production the new TRC-shells were installed and assembled on the campus of TU-Chemnitz. A special feature of the research pavilions are the LED light strips integrated in the shell elements, providing homogeneous illumination.