Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles i...Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests.展开更多
Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different...Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.展开更多
Two new species of the genus Pseudovolucella Shiraki are described from Sichuan in China: P. hengduanshanensis sp. nov. and P. dimorpha sp. nov. These two new species are similar to P. decipiens and P. ochracea as re...Two new species of the genus Pseudovolucella Shiraki are described from Sichuan in China: P. hengduanshanensis sp. nov. and P. dimorpha sp. nov. These two new species are similar to P. decipiens and P. ochracea as reviewed by Reemer and Hippa(2008). The males of these 4 species have black abdominal tergite 4, P. decipiens has the hind femur of male with a small apicoventral knob, but the new species and P. ochracea have the hind femora of males straight on ventral margins showing that they are more similar to P. ochracea. However, P. hengduanshanensis sp. nov. is distinguished from P. ochracea by face absent of dark brown median vitta, abdominal tergite 2 with a pair of broad yellow basal fasciae separated narrowly in the middle, tergite 3 in male and tergites 3 and 4 in female respectively with a pair of yellow narrow fasciae(P. ochracea has the face with a broad middle dark brown to black vitta diverging above and fading away the paler color, abdominal tergite 2 is wholly pale brownish yellow on basal 2/3, the remainder of tergites shining black, female unknown). P. dimorpha sp. nov. differs from P. ochracea with abdominal tergite 2 in male and tergites 2, 3 and 4 in female with a pair of yellow narrow fasciae respectively(abdominal characters of P. ochracea see above). Additionally, the male terminalia of these two new species are different.展开更多
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen...The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances.展开更多
This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transfo...This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates. With this approach, airfoil shape is considered in terms of design variables. The optimization process is constructed by integrating several programs developed by author. The design variables include twist, taper ratio, point of taper initiation, blade root chord, and coefficients of the airfoil distribution function. Aerodynamic constraints consist of limits on power available in hover and forward flight. The trim condition must be attainable. This paper considers rotor blade configuration for the hover flight condition only, so that the required power in hover is chosen as the objective function of the optimization problem. Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance. The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%, which is a good improvement for rotor blade design.展开更多
In the "modified quasi-steady" approach, two-dimensional (2D) aerodynamic models of flapping wing motions are analyzed with focus on different types of wing rotation and different positions of rotation axis to exp...In the "modified quasi-steady" approach, two-dimensional (2D) aerodynamic models of flapping wing motions are analyzed with focus on different types of wing rotation and different positions of rotation axis to explain the force peak at the end of each half stroke. In this model, an additional velocity of the mid chord position due to rotation is superimposed on the translational relative velocity of air with respect to the wing. This modification produces augmented forces around the end of each stroke. For each case of the flapping wing motions with various combination of controlled translational and rotational velocities of the wing along inclined stroke planes with thin figure-of-eight trajectory, discussions focus on lift-drag evolution during one stroke cycle and efficiency of types of wing rotation. This "modified quasi-steady" approach provides a systematic analysis of various parameters and their effects on efficiency of flapping wing mechanism. Flapping mechanism with delayed rotation around quarter-chord axis is an efficient one and can be made simple by a passive rotation mechanism so that it can be useful for robotic application.展开更多
The original free vortex wake model was used for numerical investigation.Calculation of the aerodynamic characteristics in hover and vertical descent modes in the range of vertical descent speed of 0–30 m/s including...The original free vortex wake model was used for numerical investigation.Calculation of the aerodynamic characteristics in hover and vertical descent modes in the range of vertical descent speed of 0–30 m/s including the Vortex Ring State(VRS)area was performed.The calculations were carried out under the condition of variable blade pitch angle values providing a fixed timeaverage thrust value.Visualization data of free vortex wake shapes,flow structures,and velocity fields were obtained and analyzed.The time-dependences of the rotor’s thrust and torque coefficients were obtained and analyzed.The obtained data allows determining the boundaries of the VRS area by various criteria such as rotor thrust and torque pulsations,growth of rotor power consumption relative to the hover,growth of rotor induced velocities relative to the hover,and growth of the required rotor blade pitch angles values.The results of the study are compared with experimental and calculated data of other authors and can significantly supplement the available results of experimental and computational studies in this area.展开更多
The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system an...The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.展开更多
This paper describes two new species of Syrphidae from Shanxi Province of China.Chrysotoxum seximaculatum sp.nov.is similar to C.rossicum Becker,1921,but differs from the latter by the rather short hairs on body,black...This paper describes two new species of Syrphidae from Shanxi Province of China.Chrysotoxum seximaculatum sp.nov.is similar to C.rossicum Becker,1921,but differs from the latter by the rather short hairs on body,black pleuron,three pairs of orange marks on abdomen and tergite 5 black,the latter with long hairs on body,black pleuron with yellow marks,four pairs of yellow marks on abdomen and tergite 5 with yellow small lateral marks.Dasysyrphus luyashanensis sp.nov.is allied to D.albostriatus(Fallén,1817),but can be distinguished from the latter by the postalar callus with yellow maculae,hind femur with black broad rings and apical segments of hind tarsi blackish dorsally,the latter with both postalar callus and postpronotal lobes with yellow maculae,basal 1/4 to 1/2 of the fore and middle femora,middle part of hind femur and apical half of hind tibia black.展开更多
Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased mi...Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu- ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and rolling torques are canceled out due to the symmetric wing kinematics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time- varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.展开更多
The longitudinal steady-state control for going from hovering to small speed flight of a model insect is studied, using the method of computational fluid dynamics to compute the aerodynamic derivatives and the techniq...The longitudinal steady-state control for going from hovering to small speed flight of a model insect is studied, using the method of computational fluid dynamics to compute the aerodynamic derivatives and the techniques based on the linear theories of stability and control for determining the non-zero equilibrium points. Morphological and certain kinematical data of droneflies are used for the model insect. A change in the mean stroke angle (δФ) results in a horizontal forward or backward flight; a change in the stroke amplitude (δФ) or a equal change in the down- and upstroke angles of attack (δα1) results in a vertical climb or decent; a proper combination of δФ and δФ controls (or δФ and δα1 controls) can give a flight of any (small) speed in any desired direction.展开更多
Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, mot...Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.展开更多
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
This paper describes two new species in the genus Eumerus Meigen,1822(Diptera:Syrphidae)from Alashan Right Banner of China.Eumerus alxaensis Huo&Liu sp.nov.is similar to E.tuberculatus Rondani,but differs from the...This paper describes two new species in the genus Eumerus Meigen,1822(Diptera:Syrphidae)from Alashan Right Banner of China.Eumerus alxaensis Huo&Liu sp.nov.is similar to E.tuberculatus Rondani,but differs from the latter by mesonotum without whitish pollinose middle stripes,tergite 4 with distinctly L-shaped whitish pollinose bands,eyes with long and dense hairs in male but shorter in female,hypandrium ventrally with a semicircular sheet protruding on the middle of lateral margins.Eumerus seximaculatum Huo&Liu sp.nov.is allied to E.strigatus(Fallén),but differs from the latter by eyes bare,vertex covered with pale yellow hairs,whitish pollinose bands on broader tergites,sternite 4 of male with deeply concave posterior margin and male terminalia distinctly different.展开更多
文摘Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests.
基金supported by the National Natural Science Foundation of China(No.11972190).
文摘Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.
基金supported by Conservation International(Insect Resource Survey in Anzihe Protected Area.)
文摘Two new species of the genus Pseudovolucella Shiraki are described from Sichuan in China: P. hengduanshanensis sp. nov. and P. dimorpha sp. nov. These two new species are similar to P. decipiens and P. ochracea as reviewed by Reemer and Hippa(2008). The males of these 4 species have black abdominal tergite 4, P. decipiens has the hind femur of male with a small apicoventral knob, but the new species and P. ochracea have the hind femora of males straight on ventral margins showing that they are more similar to P. ochracea. However, P. hengduanshanensis sp. nov. is distinguished from P. ochracea by face absent of dark brown median vitta, abdominal tergite 2 with a pair of broad yellow basal fasciae separated narrowly in the middle, tergite 3 in male and tergites 3 and 4 in female respectively with a pair of yellow narrow fasciae(P. ochracea has the face with a broad middle dark brown to black vitta diverging above and fading away the paler color, abdominal tergite 2 is wholly pale brownish yellow on basal 2/3, the remainder of tergites shining black, female unknown). P. dimorpha sp. nov. differs from P. ochracea with abdominal tergite 2 in male and tergites 2, 3 and 4 in female with a pair of yellow narrow fasciae respectively(abdominal characters of P. ochracea see above). Additionally, the male terminalia of these two new species are different.
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project(B07009)
文摘The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances.
基金co-supported by National Foundation for Science and Technology Development(NAFOSTED) of Vietnam (Project No. 107.04-2012.25)the Agency for Defense Development in the Republic of Korea under contract UD100048JDthe project KARI-University Partnership Program 2009-09-2
文摘This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates. With this approach, airfoil shape is considered in terms of design variables. The optimization process is constructed by integrating several programs developed by author. The design variables include twist, taper ratio, point of taper initiation, blade root chord, and coefficients of the airfoil distribution function. Aerodynamic constraints consist of limits on power available in hover and forward flight. The trim condition must be attainable. This paper considers rotor blade configuration for the hover flight condition only, so that the required power in hover is chosen as the objective function of the optimization problem. Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance. The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%, which is a good improvement for rotor blade design.
文摘In the "modified quasi-steady" approach, two-dimensional (2D) aerodynamic models of flapping wing motions are analyzed with focus on different types of wing rotation and different positions of rotation axis to explain the force peak at the end of each half stroke. In this model, an additional velocity of the mid chord position due to rotation is superimposed on the translational relative velocity of air with respect to the wing. This modification produces augmented forces around the end of each stroke. For each case of the flapping wing motions with various combination of controlled translational and rotational velocities of the wing along inclined stroke planes with thin figure-of-eight trajectory, discussions focus on lift-drag evolution during one stroke cycle and efficiency of types of wing rotation. This "modified quasi-steady" approach provides a systematic analysis of various parameters and their effects on efficiency of flapping wing mechanism. Flapping mechanism with delayed rotation around quarter-chord axis is an efficient one and can be made simple by a passive rotation mechanism so that it can be useful for robotic application.
文摘The original free vortex wake model was used for numerical investigation.Calculation of the aerodynamic characteristics in hover and vertical descent modes in the range of vertical descent speed of 0–30 m/s including the Vortex Ring State(VRS)area was performed.The calculations were carried out under the condition of variable blade pitch angle values providing a fixed timeaverage thrust value.Visualization data of free vortex wake shapes,flow structures,and velocity fields were obtained and analyzed.The time-dependences of the rotor’s thrust and torque coefficients were obtained and analyzed.The obtained data allows determining the boundaries of the VRS area by various criteria such as rotor thrust and torque pulsations,growth of rotor power consumption relative to the hover,growth of rotor induced velocities relative to the hover,and growth of the required rotor blade pitch angles values.The results of the study are compared with experimental and calculated data of other authors and can significantly supplement the available results of experimental and computational studies in this area.
基金The Fundamental Research Funds for the Central Universities(No.3202003905)Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12_0080)
文摘The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.
基金funded by a Key Project of the Bio-resources Key Laboratory of Shaanxi Province(14JS017)a Scientific Research Plan Projects of Key Laboratory of Shaanxi Education Department(16JS020)a China Postdoctoral Science Foundation(2016M590968)
文摘This paper describes two new species of Syrphidae from Shanxi Province of China.Chrysotoxum seximaculatum sp.nov.is similar to C.rossicum Becker,1921,but differs from the latter by the rather short hairs on body,black pleuron,three pairs of orange marks on abdomen and tergite 5 black,the latter with long hairs on body,black pleuron with yellow marks,four pairs of yellow marks on abdomen and tergite 5 with yellow small lateral marks.Dasysyrphus luyashanensis sp.nov.is allied to D.albostriatus(Fallén,1817),but can be distinguished from the latter by the postalar callus with yellow maculae,hind femur with black broad rings and apical segments of hind tarsi blackish dorsally,the latter with both postalar callus and postpronotal lobes with yellow maculae,basal 1/4 to 1/2 of the fore and middle femora,middle part of hind femur and apical half of hind tibia black.
基金PRESTO (Precursory Research for Embryonic Science and Technology) program of the Japan Science and Technology Agency (JST)Grant-in-Aid for Scientific Research No 18656056 and No 18100002+1 种基金Japan Society for the promotion of Science (JSPS)a MURI projectunder AFOSR Project No FA9550-07-1-0547
文摘Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu- ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and rolling torques are canceled out due to the symmetric wing kinematics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time- varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.
基金the National Natural Science Foundation of China (10732030)the 111 Project (B07009)Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP, 200800061013)
文摘The longitudinal steady-state control for going from hovering to small speed flight of a model insect is studied, using the method of computational fluid dynamics to compute the aerodynamic derivatives and the techniques based on the linear theories of stability and control for determining the non-zero equilibrium points. Morphological and certain kinematical data of droneflies are used for the model insect. A change in the mean stroke angle (δФ) results in a horizontal forward or backward flight; a change in the stroke amplitude (δФ) or a equal change in the down- and upstroke angles of attack (δα1) results in a vertical climb or decent; a proper combination of δФ and δФ controls (or δФ and δα1 controls) can give a flight of any (small) speed in any desired direction.
文摘Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.
基金This research is supported by the science and technology project of Alxa League(AMYY202020-1).
文摘This paper describes two new species in the genus Eumerus Meigen,1822(Diptera:Syrphidae)from Alashan Right Banner of China.Eumerus alxaensis Huo&Liu sp.nov.is similar to E.tuberculatus Rondani,but differs from the latter by mesonotum without whitish pollinose middle stripes,tergite 4 with distinctly L-shaped whitish pollinose bands,eyes with long and dense hairs in male but shorter in female,hypandrium ventrally with a semicircular sheet protruding on the middle of lateral margins.Eumerus seximaculatum Huo&Liu sp.nov.is allied to E.strigatus(Fallén),but differs from the latter by eyes bare,vertex covered with pale yellow hairs,whitish pollinose bands on broader tergites,sternite 4 of male with deeply concave posterior margin and male terminalia distinctly different.