Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-...Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
The effect of hot deformation onα-phase precipitation during the subsequent heat treatment,as well as the mechanical properties of TB18 Ti-alloy,was investigated.Results show that the round bar obtained by the dual-p...The effect of hot deformation onα-phase precipitation during the subsequent heat treatment,as well as the mechanical properties of TB18 Ti-alloy,was investigated.Results show that the round bar obtained by the dual-phase field forging of the cast ingot exhibits uniform composition distribution on its cross-section.However,various degrees of deformation are detected at different positions on the cross-section,which is attributed to the characteristics of the forging process.Under the forging condition,the microstructure is mainly composed ofβ-phase matrix and coarsened discontinuous primaryα-phases.After solution and following artificial aging treatment,the primaryα-phases disappear,while needle-like secondaryα-phases precipitate in the matrix.Additionally,dispersed white zones are observed in the samples after aging,which are analyzed to be the precipitation-free zones of secondaryα-phase.Despite a uniform compositional distribution among various regions,these dispersed white zones exhibit higher content and larger size in the positions that have undergone lower forging deformation.It indicates that the insufficient forging deformation inhibits the precipitation of the secondaryα-phase,ultimately resulting in the lower strengthening effect by heat treatment.Thus,consistent with the characteristics of the forging process,a periodic variation of sample in strength is detected along the circumferential direction of the forged round bar.展开更多
The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot co...The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).展开更多
The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 ...The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 s^(-1),under 70% deformation conditions.The true stress-true strain curves were analyzed and a constitutive equation was established at a strain of 0.5.Based on the dynamic material model proposed by Prasad,processing maps were developed under different strain conditions.Microstructure of compressed sample was observed by electron backscatter diffraction.The results reveal that the electrolytic copper demonstrates high sensitivity to deformation temperature and strain rate during high-temperature plastic deformation.The flow stress decreases gradually with raising the temperature and reducing the strain rate.According to the established processing map,the optimal processing conditions are determined as follows:deformation temperatures of 600-650℃ and strain rates of 5-10 s^(-1).Discontinuous dynamic recrystallization of electrolytic copper occurs during high-temperature plastic deformation,and the grains are significantly refined at low temperature and high strain rate conditions.展开更多
The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a...The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.展开更多
Through thermodynamic calculations and microstructural characterization,the effect of niobium(Nb)content on the solidifica-tion characteristics of Alloy 625 Plus was systematically investigated.Subsequently,the effect...Through thermodynamic calculations and microstructural characterization,the effect of niobium(Nb)content on the solidifica-tion characteristics of Alloy 625 Plus was systematically investigated.Subsequently,the effect of Nb content on hot deformation behaviorwas examined through hot compression experiments.The results indicated that increasing the Nb content lowers the liquidus temperatureof the alloy by 51℃,producing a denser solidification microstructure.The secondary dendrite arm spacing(SDAS)of the alloy decreasesfrom 39.09 to 22.61μm.Increasing the Nb content alleviates element segregation but increases interdendritic precipitates,increasing theirarea fraction from 0.15% to 5.82%.These precipitates are primarily composed of large Laves,δ,η,and γ″phases,and trace amounts of Nb C.The shapes of these precipitates change from small chunks to large elongated forms.No significant change in the type or amount ofinclusions within the alloy is detected.The inclusions are predominantly individual Al_(2)O_(3) and TiN,as well as Al_(2)O_(3)/Ti N composite inclu-sions.Samples with varying Nb contents underwent hot compression deformation at a true strain of 0.69,a strain rate of 0.5 s^(-1),and a de-formation temperature of 1150℃.Increasing the Nb content also elevates the peak stress observed in the flow curves.However,alloyswith higher Nb content exhibit more pronounced recrystallization softening effects.The Laves phase precipitates do not completely redis-solve during hot deformation and are stretched to elongated shapes.The high-strain energy storage increases the recrystallization fractionfrom 32.4% to 95.5%,significantly enhancing the degree of recrystallization and producing a more uniform deformation microstructure.This effect is primarily attributed to the addition of Nb,which refines the initial grains of the alloy,enhances the solid solution strengthen-ing of the matrix,and improves the induction of particle-stimulated nucleation.展开更多
Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during hom...Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during homogenization and the hot deformation behavior of the homogenized ingot were investigated in this study.The results indicate that:(1)the solidified ingot exhibits a typical dendritic microstructure,and significant element segregation occurs,leading to the presence of Ti,Nb,and Mo-rich precipitates in the interdendritic region;(2)Following homogenization,the degree of element segregation in the ingot is significantly reduced.The diffusion coefficients(D)of Ti,Nb,and Mo under various homogenization conditions were calculated.Subsequently,the diffusion constants(D_(0))and activation energies(Q)of Ti,Nb,and Mo were obtained to be 0.01432,0.00397 and 0.00195 cm^(2)/s and 244.851,230.312,and 222.125 kJ/mol,respectively.Finally,the diffusion kinetics formulas for Ti,Nb,and Mo in Alloy 625 Plus were established.After homogenization at 1220℃for 8 h,the alloy exhibits low deformation resistance,a high degree of recrystallization,and optimal deformation coordination ability.Therefore,this represents a rational single-stage homogenization process.展开更多
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti...The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.展开更多
This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrheni...This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions.The predictive capability of both models was assessed using the coefficients of determination(R^(2)),average absolute relative error(AARE),and root mean square error(RMSE).The findings show that the osprey optimization algorithm convolutional neural network(OOA-CNN)model outperforms the Arrhenius model,achieving a high R^(2) value of 0.99959 and lower AARE and RMSE values.The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains.Finally,combining the processing map and microstructure characterization,the ideal processing domain was identified as 1100℃ at strain rates of 0.01-0.1 s^(-1).This study provided key insights into optimizing the hot working process of CoNiV MEA.展开更多
The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experim...The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experiments.Based on the obtained flow stresses,a strain-compensated Arrhenius-type model was developed for the description of hot deformation behavior,and the consistency of the predicted flow stresses with the experimental values confirms the accuracy of the developed model.Furthermore,the processing maps were constructed and classified into the instability domain,low-dissipation stability domain and high-dissipation stability domain in accordance with the dynamic material model and the instability criterion.Microstructure observations indicated that the instability domain exhibits the adiabatic shear bands formation,and the low-power dissipation domain exhibits partial dynamic recrystallization(DRX),with the temperature increase/strain rate decrease being favorable for the DRX.The high-dissipation stability domain was occupied by uniformly fine equiaxed grains,and was identified as the optimal processing window,which corresponds to the deformation conditions at 1070–1150℃ with strain rates ranging from 0.01 to 0.15 s^(–1).Moreover,various DRX mechanisms are observed to occur during the hot deformation,which include the discontinuous dynamic recrystallization,characterized by nucleation at bulged boundaries,the continuous dynamic recrystallization with subgrain progressive rotation and the particle stimulated nucleation mechanism with stimulated nucleation of carbide particles.展开更多
The popular constitutive models used in the field of hot forming of magnesium alloys can be divided into phenomenological models,machine learning models,and internal state variables(ISV)models based on physical mechan...The popular constitutive models used in the field of hot forming of magnesium alloys can be divided into phenomenological models,machine learning models,and internal state variables(ISV)models based on physical mechanisms.Currently,there is a lack of comparison and evaluation regarding the suitability of different types of models.In this study,Mg-Gd-Y-Zr alloy is taken as the research object.The hot deformation behavior of the alloy was studied systematically.Subsequently,Arrhenius model with strain compensation,artificial neural network(ANN)model,and ISV model involving dynamic recrystallization(DRX),dislocation density and grain size evolution were established.ANN model demonstrates a higher level of accuracy in fitting the original stress-strain curves compared to both ISV model and modified Arrhenius model,but ANN model is not suitable for predicting the experimental results outside of the initial database.ISV model considers the impact of microstructure evolution history on stress,making it highly effective in reflecting the mechanical responses under complex loading condition.The established ISV model is embedded in the ABAQUS software,which shows good ability in calculating the mechanical response,dimension,and microstructure evolution information of the component during hot forming.展开更多
Nanocrystalline Ce-based rare earth(RE)-Fe-B alloys exhibit relatively good hard magnetic properties and high performance-cost ratio,but their properties deteriorate seriously after hot deformation(HD).Here,we present...Nanocrystalline Ce-based rare earth(RE)-Fe-B alloys exhibit relatively good hard magnetic properties and high performance-cost ratio,but their properties deteriorate seriously after hot deformation(HD).Here,we present a simplified one-step HD process for preparing anisotropic Ce-based Ce_(25.88)La_(2.85)Y_(4.56)Fe_(65.73)B_(0.98)(wt%)magnets.The precursor of nanocrystalline powders is first compacted inside a copper tube,and then the powders with the tube are deformed together to achieve magnetic anisotropy.Compared with the conventional two-step HD magnet,i.e.,hot pressing followed by HD,one-step HD significantly increased the coercivity from 1.6 to 3.0 kOe,and the maximum magnetic energy product was improved from 3.7 to 4.8 MGOe.The microstructure characterization indicates that one-step HD can not only produce a more desirable microstructure,characterized by well-aligned platelet-shaped grains with reduced aspect ratio but also greatly inhibit the formation of coarse grain(CG)region.Both of them have been confirmed to be beneficial to enhancing coercivity by micromagnetic simulations.Our results thus demonstrate that the simplified one-step HD process offers a promising approach to developing high-performance anisotropic Ce-based magnets.展开更多
The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The...The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.展开更多
As high-speed railway transportation advances toward increased velocities,it is imperative to enhance the mechanical performance of EA4T axle steel,especially through microstructures regulation by thermal–mechanical ...As high-speed railway transportation advances toward increased velocities,it is imperative to enhance the mechanical performance of EA4T axle steel,especially through microstructures regulation by thermal–mechanical processing.However,little research has been conducted on the phase transformation and microstructure evolution mechanism of EA4T steel under thermal–mechanical load,resulting in a lack of theoretical guidance.The hot deformation behavior and phase transformation mechanism of EA4T steel were investigated under different conditions of strain rates(0.01–10 s^(−1))and temperatures(850–1200℃).A relation of deformation stresses with Zener–Hollomon parameter was established to characterize the mechanical response and dynamic softening effect of EA4T steel during hot compression.The evolution of grain boundaries with different misorientations has been analyzed to evaluate the influence of strain rates and temperatures on the dynamic recrystallization.It was found that the grain refinement mechanisms of EA4T steel by dynamic recrystallization including twin-assisted boundary bulging,sub-grain rotation,and sub-grain growth.Transmission electron microscopy observations confirmed that dynamic recrystallization nuclei and small recrystallized grains impeded martensite phase nucleation during hot deformation,while the ongoing dynamic recrystallization consumed deformation stored energy and reduced dislocation density,which mitigated the stress concentration in the parent phase of martensite,thereby facilitating the uniform growth of martensite lath with a mixing structure of nanotwins and dislocations during quenching.展开更多
Hot deformation tests were performed under various temperature and strain rate conditions to determine the optimal hot working conditions for the Co–Cr–Fe alloy,extensively used in the aerospace industry for its exc...Hot deformation tests were performed under various temperature and strain rate conditions to determine the optimal hot working conditions for the Co–Cr–Fe alloy,extensively used in the aerospace industry for its excellent hardness and high wear resistance.The mechanical properties and microstructure observations showed that the flow stress of the sample,composed of M7C3–M2C carbides and face-centered cubic matrix,increased with decreasing temperature and increasing strain rate.Furthermore,as the deformation temperature increased,the volume fraction of recrystallized grains increased at equivalent strain levels,and the dynamic recrystallization mechanism transitioned from continuous dynamic recrystallization to discontinuous dynamic recrystallization.Based on the activation energy(Qc=419.4 kJ/mol)and power exponent(n=5.2)achieved from the true strain–stress curves,it was concluded that dislocation climb creep was the dominant deformation mechanism during hot working of the Co–Cr–Fe alloy.展开更多
Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,a...Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,and strain,leading to complex flow behavior and an exceptionally narrow processing window for Mg alloy.To overcome the shortcomings of the conventional Arrhenius-type(AT)model,this study developed machine learning-based Arrhenius-type(ML-AT)models by combining the genetic algorithm(GA),particle swarm optimization(PSO),and artificial neural network(ANN).Results indicated that when describing the flow behavior of the AQ80 alloy,the PSO-ANN-AT model demonstrates the most prominent prediction accuracy and generalization ability among all ML-AT and AT models.Moreover,an activation energy-processing(AEP)map was established using the reconstructed flow stress and activation energy fields based on the PSO-ANN-AT model.Experimental validations revealed that this AEP map exhibits superior predictive capability for microstructure evolution compared to the one established by the traditional interpolation methods,ultimately contributing to the precise determination of the optimum processing window.These findings provide fresh insights into the accurate constitutive description and workability characterization of Mg alloy during hot deformation.展开更多
Graphene nanoplates(GNPs)-reinforced magnesium matrix composites have been attracted great attention.However,knowledge is lack for the hot deformation behavior of GNP-reinforced magnesium(GNPs/Mg)composite.In this stu...Graphene nanoplates(GNPs)-reinforced magnesium matrix composites have been attracted great attention.However,knowledge is lack for the hot deformation behavior of GNP-reinforced magnesium(GNPs/Mg)composite.In this study,the fine-grained GNPs/Mg composite was fabricated by powder metallurgy process followed by extrusion.The hot deformation behavior,microstructure evolution and dynamic recrystallization(DRX)mechanism of fine-grained GNPs/Mg composite were investigated by hot compression test and electron back-scatter diffraction(EBSD).The hot compression tests of the composite were conducted at temperatures between 423 and 573 K with the strain rates from 0.001 to 1 s^(-1).The strain compensated power law equation was established to describe the hot deformation behavior of the composites.The stress exponent and activation energy of the composite are 7.76 and 83.23 kJ/mol,respectively,suggesting that the deformation mechanism is grain boundary slip controlled dislocation climb creep.The abnormally high stress exponent and activation energy are unattainable in the composite due to the fine grain size of the composites and the absence of Zener pinning and Orowan effects of GNPs reinforcement.The grain size increases with the decrease in Zener-Hollomn(Z)parameter,which can be well fitted by power-law relationship.With the increase in grain size and decrease in Z parameter,the geometrically necessary dislocation density decreases,which shows the approximately power-law relationship.A random and weak texture was formed after hot compression.The discontinuous dynamic recrystallization and continuous dynamic recrystallization mechanism dominated the DRX behavior at 473 K/0.001 s^(-1) and 573 K/0.001 s^(-1),respectively.展开更多
The hot deformation behavior of a newly developed Ni–W–Cr superalloy for use in 800℃molten salt reactors(MSRs)was looked into by isothermal compression tests in the temperature range of 1050–1200℃with a strain ra...The hot deformation behavior of a newly developed Ni–W–Cr superalloy for use in 800℃molten salt reactors(MSRs)was looked into by isothermal compression tests in the temperature range of 1050–1200℃with a strain rate of 0.001–1 s^(−1)under a true strain of 0.693.An Arrhenius-type model for the Ni–W–Cr superalloy was constructed by fitting the corrected flow stress data.In this model,the effect of dispersion of solid solution elements during thermal deformation on microstructure evolution was considered,as well as the effects of friction and adiabatic heating on the temperature and strain rate-dependent variation of flow stresses.The hot deformation activation energy of the Ni–W–Cr superalloy was 323 kJ/mol,which was less than that of the Hastelloy N alloy(currently used in MSRs).According to the rectified flow stress data,processing maps were created.In conjunction with the corresponding deformation microstructures,the flow instability domains of the Ni–W–Cr superalloy were determined to be 1050–1160℃/0.03–1 s^(−1)and 1170–1200℃/0.001–0.09 s^(−1).In these deformation conditions,a locally inhomogeneous microstructure was caused by flow-i.e.,incomplete dynamic recrystallization and hot working parameters should avoid sliding into these domains.The ideal processing hot deformation domain for the Ni–W–Cr superalloy was determined to be 1170–1200℃/0.6–1 s^(−1).展开更多
Static recrystallization(SRX)behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions.The order of influence of deformation p...Static recrystallization(SRX)behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions.The order of influence of deformation parameters on static recrystallization behaviors,from high to low,is followed by temperature,first-stage strain and strain rate.Meanwhile,the effect of holding time on static recrystallization behaviors is significantly controlled by temperature.In addition,with the increase in temperature from 1000 to 1200°C,the static recrystallization mechanism evolves from discontinuous static recrystallization and continuous static recrystallization(cSRX)to metadynamic recrystallization and cSRX,and finally to cSRX.The cSRX exists at all temperatures.This is because high stacking fault energy(56 mJ m−2)promotes the movement of dislocations,making the deformation mechanism of this steel is dominated by planar slip of dislocation.Large undissolved sigma precipitates promote static recrystallization through particle-stimulated nucleation.However,small strain-induced precipitates at grain boundaries hinder the nucleation of conventional SRX and the growth of recrystallized grains,while the hindering effect decreases with the increase in temperature.展开更多
基金financially supported by the National Key Re-search and Development Program of China(No.2021YFB3702604)the National Natural Science Foundation of China(No.52174377)+1 种基金the Chongqing Natural Science Foundation Project(No.CSTB2023NSCQ-MSX0824)This work was also supported by the Shaanxi Materials Analysis&Research Center and the Analytical&Testing Center of NPU.
文摘Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金Qin Chuangyuan Cites High-Level Innovation,Entrepreneurship Talent Project(QCYRCXM-2023-003)Innovation Capability Support Program of Shaanxi(2022KJXX-84)。
文摘The effect of hot deformation onα-phase precipitation during the subsequent heat treatment,as well as the mechanical properties of TB18 Ti-alloy,was investigated.Results show that the round bar obtained by the dual-phase field forging of the cast ingot exhibits uniform composition distribution on its cross-section.However,various degrees of deformation are detected at different positions on the cross-section,which is attributed to the characteristics of the forging process.Under the forging condition,the microstructure is mainly composed ofβ-phase matrix and coarsened discontinuous primaryα-phases.After solution and following artificial aging treatment,the primaryα-phases disappear,while needle-like secondaryα-phases precipitate in the matrix.Additionally,dispersed white zones are observed in the samples after aging,which are analyzed to be the precipitation-free zones of secondaryα-phase.Despite a uniform compositional distribution among various regions,these dispersed white zones exhibit higher content and larger size in the positions that have undergone lower forging deformation.It indicates that the insufficient forging deformation inhibits the precipitation of the secondaryα-phase,ultimately resulting in the lower strengthening effect by heat treatment.Thus,consistent with the characteristics of the forging process,a periodic variation of sample in strength is detected along the circumferential direction of the forged round bar.
文摘The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).
基金Gansu Province Higher Education Institutions Industrial Support Program Project(2022CYZC-19)Gansu Provincial Science and Technology Major Project(22ZD6GA008)。
文摘The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 s^(-1),under 70% deformation conditions.The true stress-true strain curves were analyzed and a constitutive equation was established at a strain of 0.5.Based on the dynamic material model proposed by Prasad,processing maps were developed under different strain conditions.Microstructure of compressed sample was observed by electron backscatter diffraction.The results reveal that the electrolytic copper demonstrates high sensitivity to deformation temperature and strain rate during high-temperature plastic deformation.The flow stress decreases gradually with raising the temperature and reducing the strain rate.According to the established processing map,the optimal processing conditions are determined as follows:deformation temperatures of 600-650℃ and strain rates of 5-10 s^(-1).Discontinuous dynamic recrystallization of electrolytic copper occurs during high-temperature plastic deformation,and the grains are significantly refined at low temperature and high strain rate conditions.
基金Shenzhen Science and Technology Program(KJZD20230923113900001)Project of Industry and Information Technology Bureau of Shenzhen Municipality(201806071403422960)。
文摘The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.
基金the financial support from the National Natural Science Foundation of China(No.52174303)the Program of Introducing Talents of Disciplineto Universities,China(No.B21001)the Joint Program of Science and Technology Plans in Liaoning Province,China(No.2023JH2/101700302t)。
文摘Through thermodynamic calculations and microstructural characterization,the effect of niobium(Nb)content on the solidifica-tion characteristics of Alloy 625 Plus was systematically investigated.Subsequently,the effect of Nb content on hot deformation behaviorwas examined through hot compression experiments.The results indicated that increasing the Nb content lowers the liquidus temperatureof the alloy by 51℃,producing a denser solidification microstructure.The secondary dendrite arm spacing(SDAS)of the alloy decreasesfrom 39.09 to 22.61μm.Increasing the Nb content alleviates element segregation but increases interdendritic precipitates,increasing theirarea fraction from 0.15% to 5.82%.These precipitates are primarily composed of large Laves,δ,η,and γ″phases,and trace amounts of Nb C.The shapes of these precipitates change from small chunks to large elongated forms.No significant change in the type or amount ofinclusions within the alloy is detected.The inclusions are predominantly individual Al_(2)O_(3) and TiN,as well as Al_(2)O_(3)/Ti N composite inclu-sions.Samples with varying Nb contents underwent hot compression deformation at a true strain of 0.69,a strain rate of 0.5 s^(-1),and a de-formation temperature of 1150℃.Increasing the Nb content also elevates the peak stress observed in the flow curves.However,alloyswith higher Nb content exhibit more pronounced recrystallization softening effects.The Laves phase precipitates do not completely redis-solve during hot deformation and are stretched to elongated shapes.The high-strain energy storage increases the recrystallization fractionfrom 32.4% to 95.5%,significantly enhancing the degree of recrystallization and producing a more uniform deformation microstructure.This effect is primarily attributed to the addition of Nb,which refines the initial grains of the alloy,enhances the solid solution strengthen-ing of the matrix,and improves the induction of particle-stimulated nucleation.
基金Project(52174303)supported by the National Natural Science Foundation of ChinaProject(2023JH2/101700302)supported by the Joint Program of Science and Technology Plans in Liaoning Province,China。
文摘Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during homogenization and the hot deformation behavior of the homogenized ingot were investigated in this study.The results indicate that:(1)the solidified ingot exhibits a typical dendritic microstructure,and significant element segregation occurs,leading to the presence of Ti,Nb,and Mo-rich precipitates in the interdendritic region;(2)Following homogenization,the degree of element segregation in the ingot is significantly reduced.The diffusion coefficients(D)of Ti,Nb,and Mo under various homogenization conditions were calculated.Subsequently,the diffusion constants(D_(0))and activation energies(Q)of Ti,Nb,and Mo were obtained to be 0.01432,0.00397 and 0.00195 cm^(2)/s and 244.851,230.312,and 222.125 kJ/mol,respectively.Finally,the diffusion kinetics formulas for Ti,Nb,and Mo in Alloy 625 Plus were established.After homogenization at 1220℃for 8 h,the alloy exhibits low deformation resistance,a high degree of recrystallization,and optimal deformation coordination ability.Therefore,this represents a rational single-stage homogenization process.
基金Project(52205421)supported by the National Natural Science Foundation of ChinaProject(AA23023028)supported by the Guangxi Science and Technology Major Project,China+2 种基金Projects(2022B0909070001,2020B010186001)supported by the Key Research and Development Projects of Guangdong Province,ChinaProject(2021B0101220006)supported by the Guangdong Key Areas Research and Development Program“Chip,Software and Computing”Major Project,ChinaProjects(2021RC2087,2022JJ30570)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.51901078)the Central Guidance for Local Scientific and Technological Development Funding Project(Grant No.236Z1003G)+3 种基金the Science and Technology Plan Project of Tangshan City(Grant No.24130207C)the Natural Science Foundation of Hebei Province(Grant No.E2022209070)the High-level Talent Project of Hebei(Grant No.E2019100007)the Open Project Program of Key Laboratory of Ministry of Education for Modern Metallurgy Technology(Grant No.2024YJKF02).
文摘This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions.The predictive capability of both models was assessed using the coefficients of determination(R^(2)),average absolute relative error(AARE),and root mean square error(RMSE).The findings show that the osprey optimization algorithm convolutional neural network(OOA-CNN)model outperforms the Arrhenius model,achieving a high R^(2) value of 0.99959 and lower AARE and RMSE values.The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains.Finally,combining the processing map and microstructure characterization,the ideal processing domain was identified as 1100℃ at strain rates of 0.01-0.1 s^(-1).This study provided key insights into optimizing the hot working process of CoNiV MEA.
基金the National Key Research and Development Program of China(No.2016YFB0700505)the National Natural Science Foundation of China(No.51571020).
文摘The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experiments.Based on the obtained flow stresses,a strain-compensated Arrhenius-type model was developed for the description of hot deformation behavior,and the consistency of the predicted flow stresses with the experimental values confirms the accuracy of the developed model.Furthermore,the processing maps were constructed and classified into the instability domain,low-dissipation stability domain and high-dissipation stability domain in accordance with the dynamic material model and the instability criterion.Microstructure observations indicated that the instability domain exhibits the adiabatic shear bands formation,and the low-power dissipation domain exhibits partial dynamic recrystallization(DRX),with the temperature increase/strain rate decrease being favorable for the DRX.The high-dissipation stability domain was occupied by uniformly fine equiaxed grains,and was identified as the optimal processing window,which corresponds to the deformation conditions at 1070–1150℃ with strain rates ranging from 0.01 to 0.15 s^(–1).Moreover,various DRX mechanisms are observed to occur during the hot deformation,which include the discontinuous dynamic recrystallization,characterized by nucleation at bulged boundaries,the continuous dynamic recrystallization with subgrain progressive rotation and the particle stimulated nucleation mechanism with stimulated nucleation of carbide particles.
基金supported by the fund of the National Natural Science Foundation of China(52275322,51875127)。
文摘The popular constitutive models used in the field of hot forming of magnesium alloys can be divided into phenomenological models,machine learning models,and internal state variables(ISV)models based on physical mechanisms.Currently,there is a lack of comparison and evaluation regarding the suitability of different types of models.In this study,Mg-Gd-Y-Zr alloy is taken as the research object.The hot deformation behavior of the alloy was studied systematically.Subsequently,Arrhenius model with strain compensation,artificial neural network(ANN)model,and ISV model involving dynamic recrystallization(DRX),dislocation density and grain size evolution were established.ANN model demonstrates a higher level of accuracy in fitting the original stress-strain curves compared to both ISV model and modified Arrhenius model,but ANN model is not suitable for predicting the experimental results outside of the initial database.ISV model considers the impact of microstructure evolution history on stress,making it highly effective in reflecting the mechanical responses under complex loading condition.The established ISV model is embedded in the ABAQUS software,which shows good ability in calculating the mechanical response,dimension,and microstructure evolution information of the component during hot forming.
基金supported by the National Natural Science Foundation of China(Nos.U21A2052,52071143 and 52301237)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515010431 and 2022A1515011453)+1 种基金China Postdoctoral Science Foundation funded project(No.2022M720845)GDAS Project of Science and Technology Development(Nos.2022GDASZH-2022010104 and 2023GDASZH-2023010104)。
文摘Nanocrystalline Ce-based rare earth(RE)-Fe-B alloys exhibit relatively good hard magnetic properties and high performance-cost ratio,but their properties deteriorate seriously after hot deformation(HD).Here,we present a simplified one-step HD process for preparing anisotropic Ce-based Ce_(25.88)La_(2.85)Y_(4.56)Fe_(65.73)B_(0.98)(wt%)magnets.The precursor of nanocrystalline powders is first compacted inside a copper tube,and then the powders with the tube are deformed together to achieve magnetic anisotropy.Compared with the conventional two-step HD magnet,i.e.,hot pressing followed by HD,one-step HD significantly increased the coercivity from 1.6 to 3.0 kOe,and the maximum magnetic energy product was improved from 3.7 to 4.8 MGOe.The microstructure characterization indicates that one-step HD can not only produce a more desirable microstructure,characterized by well-aligned platelet-shaped grains with reduced aspect ratio but also greatly inhibit the formation of coarse grain(CG)region.Both of them have been confirmed to be beneficial to enhancing coercivity by micromagnetic simulations.Our results thus demonstrate that the simplified one-step HD process offers a promising approach to developing high-performance anisotropic Ce-based magnets.
基金support from Open Project of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41622030)Danyang Coinch New Material Technology Co.,Ltd.
文摘The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.
基金support was received from National Key Research and Development Plan from China:Demonstration and application of special steel for typical components of high-end equipment(2017YFB0703004).
文摘As high-speed railway transportation advances toward increased velocities,it is imperative to enhance the mechanical performance of EA4T axle steel,especially through microstructures regulation by thermal–mechanical processing.However,little research has been conducted on the phase transformation and microstructure evolution mechanism of EA4T steel under thermal–mechanical load,resulting in a lack of theoretical guidance.The hot deformation behavior and phase transformation mechanism of EA4T steel were investigated under different conditions of strain rates(0.01–10 s^(−1))and temperatures(850–1200℃).A relation of deformation stresses with Zener–Hollomon parameter was established to characterize the mechanical response and dynamic softening effect of EA4T steel during hot compression.The evolution of grain boundaries with different misorientations has been analyzed to evaluate the influence of strain rates and temperatures on the dynamic recrystallization.It was found that the grain refinement mechanisms of EA4T steel by dynamic recrystallization including twin-assisted boundary bulging,sub-grain rotation,and sub-grain growth.Transmission electron microscopy observations confirmed that dynamic recrystallization nuclei and small recrystallized grains impeded martensite phase nucleation during hot deformation,while the ongoing dynamic recrystallization consumed deformation stored energy and reduced dislocation density,which mitigated the stress concentration in the parent phase of martensite,thereby facilitating the uniform growth of martensite lath with a mixing structure of nanotwins and dislocations during quenching.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea funded by Ministry of Science and ICT(NRF-2022M3H4A3046292).
文摘Hot deformation tests were performed under various temperature and strain rate conditions to determine the optimal hot working conditions for the Co–Cr–Fe alloy,extensively used in the aerospace industry for its excellent hardness and high wear resistance.The mechanical properties and microstructure observations showed that the flow stress of the sample,composed of M7C3–M2C carbides and face-centered cubic matrix,increased with decreasing temperature and increasing strain rate.Furthermore,as the deformation temperature increased,the volume fraction of recrystallized grains increased at equivalent strain levels,and the dynamic recrystallization mechanism transitioned from continuous dynamic recrystallization to discontinuous dynamic recrystallization.Based on the activation energy(Qc=419.4 kJ/mol)and power exponent(n=5.2)achieved from the true strain–stress curves,it was concluded that dislocation climb creep was the dominant deformation mechanism during hot working of the Co–Cr–Fe alloy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52305361,51775194,52090043)China Postdoctoral Science Foundation(2023M741245)the National Key Research and Development Program of China(2022YFB3706903).
文摘Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,and strain,leading to complex flow behavior and an exceptionally narrow processing window for Mg alloy.To overcome the shortcomings of the conventional Arrhenius-type(AT)model,this study developed machine learning-based Arrhenius-type(ML-AT)models by combining the genetic algorithm(GA),particle swarm optimization(PSO),and artificial neural network(ANN).Results indicated that when describing the flow behavior of the AQ80 alloy,the PSO-ANN-AT model demonstrates the most prominent prediction accuracy and generalization ability among all ML-AT and AT models.Moreover,an activation energy-processing(AEP)map was established using the reconstructed flow stress and activation energy fields based on the PSO-ANN-AT model.Experimental validations revealed that this AEP map exhibits superior predictive capability for microstructure evolution compared to the one established by the traditional interpolation methods,ultimately contributing to the precise determination of the optimum processing window.These findings provide fresh insights into the accurate constitutive description and workability characterization of Mg alloy during hot deformation.
基金supported by the Qinghai Provincial Science and Technology Program (No.2020-ZJ-707)the Financial supports from the Natural Science Foundation of China (No.52261016).
文摘Graphene nanoplates(GNPs)-reinforced magnesium matrix composites have been attracted great attention.However,knowledge is lack for the hot deformation behavior of GNP-reinforced magnesium(GNPs/Mg)composite.In this study,the fine-grained GNPs/Mg composite was fabricated by powder metallurgy process followed by extrusion.The hot deformation behavior,microstructure evolution and dynamic recrystallization(DRX)mechanism of fine-grained GNPs/Mg composite were investigated by hot compression test and electron back-scatter diffraction(EBSD).The hot compression tests of the composite were conducted at temperatures between 423 and 573 K with the strain rates from 0.001 to 1 s^(-1).The strain compensated power law equation was established to describe the hot deformation behavior of the composites.The stress exponent and activation energy of the composite are 7.76 and 83.23 kJ/mol,respectively,suggesting that the deformation mechanism is grain boundary slip controlled dislocation climb creep.The abnormally high stress exponent and activation energy are unattainable in the composite due to the fine grain size of the composites and the absence of Zener pinning and Orowan effects of GNPs reinforcement.The grain size increases with the decrease in Zener-Hollomn(Z)parameter,which can be well fitted by power-law relationship.With the increase in grain size and decrease in Z parameter,the geometrically necessary dislocation density decreases,which shows the approximately power-law relationship.A random and weak texture was formed after hot compression.The discontinuous dynamic recrystallization and continuous dynamic recrystallization mechanism dominated the DRX behavior at 473 K/0.001 s^(-1) and 573 K/0.001 s^(-1),respectively.
基金supported by the National Key R&D Program of China(Nos.2021YFB3700601 and 2019YFA0705304)the IMR Innovation Fund(No.2023-PY08).
文摘The hot deformation behavior of a newly developed Ni–W–Cr superalloy for use in 800℃molten salt reactors(MSRs)was looked into by isothermal compression tests in the temperature range of 1050–1200℃with a strain rate of 0.001–1 s^(−1)under a true strain of 0.693.An Arrhenius-type model for the Ni–W–Cr superalloy was constructed by fitting the corrected flow stress data.In this model,the effect of dispersion of solid solution elements during thermal deformation on microstructure evolution was considered,as well as the effects of friction and adiabatic heating on the temperature and strain rate-dependent variation of flow stresses.The hot deformation activation energy of the Ni–W–Cr superalloy was 323 kJ/mol,which was less than that of the Hastelloy N alloy(currently used in MSRs).According to the rectified flow stress data,processing maps were created.In conjunction with the corresponding deformation microstructures,the flow instability domains of the Ni–W–Cr superalloy were determined to be 1050–1160℃/0.03–1 s^(−1)and 1170–1200℃/0.001–0.09 s^(−1).In these deformation conditions,a locally inhomogeneous microstructure was caused by flow-i.e.,incomplete dynamic recrystallization and hot working parameters should avoid sliding into these domains.The ideal processing hot deformation domain for the Ni–W–Cr superalloy was determined to be 1170–1200℃/0.6–1 s^(−1).
基金supported by National Natural Science Foundation of China(No.U1810207)the Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(No.2020KJC-GH03).
文摘Static recrystallization(SRX)behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions.The order of influence of deformation parameters on static recrystallization behaviors,from high to low,is followed by temperature,first-stage strain and strain rate.Meanwhile,the effect of holding time on static recrystallization behaviors is significantly controlled by temperature.In addition,with the increase in temperature from 1000 to 1200°C,the static recrystallization mechanism evolves from discontinuous static recrystallization and continuous static recrystallization(cSRX)to metadynamic recrystallization and cSRX,and finally to cSRX.The cSRX exists at all temperatures.This is because high stacking fault energy(56 mJ m−2)promotes the movement of dislocations,making the deformation mechanism of this steel is dominated by planar slip of dislocation.Large undissolved sigma precipitates promote static recrystallization through particle-stimulated nucleation.However,small strain-induced precipitates at grain boundaries hinder the nucleation of conventional SRX and the growth of recrystallized grains,while the hindering effect decreases with the increase in temperature.