Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requi...Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requires equally considering recency and frequency. Moreover, previous studies make hot data decisions at the data block level. Such a fine-grained decision fits particularly well for flash-based storage because its random access achieves performance comparable with its sequential access. However, hard disk drives (HDDs) have a significant performance disparity between sequential and random access. Therefore, unlike flash-based storage, exploiting asymmetric HDD access performance requires making a coarse-grained decision. This paper proposes a novel hot data identification scheme adopting multiple bloom filters to efficiently characterize recency as well as frequency. Consequently, it not only consumes 50% less memory and up to 58% less computational overhead, but also lowers false identification rates up to 65% compared with a state-of-the-art scheme. Moreover, we apply the scheme to a next generation HDD technology, i.e., Shingled Magnetic Recording (SMR), to verify its effectiveness. For this, we design a new hot data identification based SMR drive with a coarse-grained decision. The experiments demonstrate the importance and benefits of accurate hot data identification, thereby improving the proposed SMR drive performance by up to 42%.展开更多
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
A method of data processing to determine the coefficients of linearization equations for 1050 anemometer (produced by Thermo-Systems Inc. -TSI, USA) with the sensors made of domestic hot wire using the program preferr...A method of data processing to determine the coefficients of linearization equations for 1050 anemometer (produced by Thermo-Systems Inc. -TSI, USA) with the sensors made of domestic hot wire using the program preferred in this Paper is described. By calculation and test, it is indicated that the error resulting from this method is about 0. 5% of the full scale and less than TSl's. By using this method we can set up the calibration curve according to the measurement range and the diameter of the hot wire at a certain accuracy.展开更多
基金This work was supported by Hankuk University of Foreign Studies Research Fund of Korea, and also partially supported by the National Science Foundation (NSF) Awards of USA under Grant Nos. 1053533, 1439622, 1217569, 1305237, and 1421913. Acknowledgment We would like to thank David Schwaderer (Samsung Semiconductor Inc., USA) for his valuable comments and proofreading.
文摘Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requires equally considering recency and frequency. Moreover, previous studies make hot data decisions at the data block level. Such a fine-grained decision fits particularly well for flash-based storage because its random access achieves performance comparable with its sequential access. However, hard disk drives (HDDs) have a significant performance disparity between sequential and random access. Therefore, unlike flash-based storage, exploiting asymmetric HDD access performance requires making a coarse-grained decision. This paper proposes a novel hot data identification scheme adopting multiple bloom filters to efficiently characterize recency as well as frequency. Consequently, it not only consumes 50% less memory and up to 58% less computational overhead, but also lowers false identification rates up to 65% compared with a state-of-the-art scheme. Moreover, we apply the scheme to a next generation HDD technology, i.e., Shingled Magnetic Recording (SMR), to verify its effectiveness. For this, we design a new hot data identification based SMR drive with a coarse-grained decision. The experiments demonstrate the importance and benefits of accurate hot data identification, thereby improving the proposed SMR drive performance by up to 42%.
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
文摘A method of data processing to determine the coefficients of linearization equations for 1050 anemometer (produced by Thermo-Systems Inc. -TSI, USA) with the sensors made of domestic hot wire using the program preferred in this Paper is described. By calculation and test, it is indicated that the error resulting from this method is about 0. 5% of the full scale and less than TSl's. By using this method we can set up the calibration curve according to the measurement range and the diameter of the hot wire at a certain accuracy.