期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Numerically and Experimentally Establishing Rheology Law for AISI 1045 Steel Based on Uniaxial Hot Compression Tests
1
作者 Josef Walek Petr Lichy 《Computer Modeling in Engineering & Sciences》 2025年第3期3135-3153,共19页
Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simu... Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simulations predicting deformation behaviors of materials is,however,primarily affected by the applied rheology law.The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel,widely used e.g.,in automotive and power engineering,under extreme conditions(i.e.,high temperatures,strain rates).The study consists of two main parts:experimentally analyzing the flow stress development of the steel under different thermomechanical conditions via uniaxial hot compression tests and establishing the rheology law via numerical simulations implementing the experimentally acquired flow stress curves.The numerical simulations then not only serve to establish the rheology law but also to verify the reliability of the selected experimental process.The results of the numerical simulations showed that the established rheology law characterizes the behavior of the investigated steel with sufficient accuracy also at high temperatures and/or strain rates,and can,therefore,be used for practical purposes.Last but not least,supplementary microstructure analyses performed for the samples subjected to the highest deformation temperature provided a deeper insight into the effects of the applied(extreme)thermomechanical conditions on the behavior of the investigated steel. 展开更多
关键词 Rheology law numerical simulation finite element method hot compression test deformation behavior microstructure
在线阅读 下载PDF
Simultaneous enhancement of strength and thermal conductivity of extruded Mg−Mn−Zn alloy via hot compression
2
作者 Hai-feng LIU Xu-yue YANG +4 位作者 Yu-xiu ZHANG Hiromi NAGAUMI Ming-chun ZHAO Zhi-yong SHI Andrej ATRENS 《Transactions of Nonferrous Metals Society of China》 2025年第3期819-831,共13页
An additional hot compression process was applied to a dilute Mg−Mn−Zn alloy post-extrusion.The alloy was extruded at 150℃ with an extrusion ratio of 15:1 and subsequently hot-compressed at 180℃ with a true strain o... An additional hot compression process was applied to a dilute Mg−Mn−Zn alloy post-extrusion.The alloy was extruded at 150℃ with an extrusion ratio of 15:1 and subsequently hot-compressed at 180℃ with a true strain of 0.9 along the extrusion direction.The microstructure,mechanical properties and thermal conductivity of as-extruded and as-hot compressed Mg−Mn−Zn alloys were investigated using optical microscopy,scanning electron microscopy,electron backscattering diffraction,and transmission electron microscopy.The aim was to concurrently enhance both strength and thermal conductivity by fostering uniform and refined microstructures while mitigating basal texture intensity.Substantial improvements were observed in yield strength(YS),ultimate tensile strength(UTS),and elongation(EL),with increase of 77%,53% and 10%,respectively.Additionally,thermal conductivity demonstrated a notable enhancement,rising from 111 to 125 W/(m·K).The underlying mechanism driving these improvements through the supplementary hot compression step was thoroughly elucidated.This study presents a promising pathway for the advancement of Mg alloys characterized by superior thermal and mechanical properties. 展开更多
关键词 Mg alloys hot compression STRENGTH thermal conductivity
在线阅读 下载PDF
Microstructure evolution and bonding mechanism of hot compression bonding joint of reduced activation ferritic/martensitic steel
3
作者 Rui-jiang Chang Guo-wang Liu +3 位作者 Qian-ying Guo Ran Ding Chen-xi Liu Yong-chang Liu 《Journal of Iron and Steel Research International》 2025年第7期2027-2038,共12页
Interfacial evolution and bonding mechanism of reduced activation ferritic/martensitic(RAFM)steel were systematically investigated through a series of hot compression tests conducted at various strains(0.15-0.8),strai... Interfacial evolution and bonding mechanism of reduced activation ferritic/martensitic(RAFM)steel were systematically investigated through a series of hot compression tests conducted at various strains(0.15-0.8),strain rates(0.001-1 s^(-1)),and temperatures(950-1050℃).Interfacial microstructural analysis revealed that plastic deformation of surface asperities effectively removes interfacial voids,and the evolution of dynamic recrystallization(DRX)aids in achieving a joint characterized by homogeneously refined microstructure and adequate interfacial grain boundary(IGB)migration.Electron backscattered diffraction analysis demonstrated that the continuous dynamic recrystallization,characterized by progressive subgrain rotation,is the prevailing DRX nucleation mechanism in RAFM steel during hot compression bonding.During DRX evolution,emerging DRX grains in the interfacial region expand into adjacent areas,transforming T-type triple junction grain boundaries into equal form,and resulting in a serrated and intricate interface.Elevated temperatures and strains,coupled with reduced strain rates,augment DRX grain nucleation and IGB migration,thus enhancing RAFM joint quality with regard to the interface bonding ratio and the interface migration ratio. 展开更多
关键词 hot compression bonding Reduced activation ferritic/martensitic steel Dynamic recrystallization Interfacial microstructure Bonding mechanism
原文传递
Hot compression bonding of a 9Cr oxide dispersion strengthened alloy and a 9Cr re duce d-activation ferritic/martensitic alloy
4
作者 Jianqiang Wang Bin Xu +2 位作者 Mingyue Sun Xiang Liu Dianzhong Li 《Journal of Materials Science & Technology》 2025年第4期225-237,共13页
An innovative method of hot compression bonding is proposed in this work for the joining of 9Cr oxide dispersion strengthened(ODS)alloy and 9Cr reduced-activation ferritic/martensitic(RAFM)alloy.The microstructural ev... An innovative method of hot compression bonding is proposed in this work for the joining of 9Cr oxide dispersion strengthened(ODS)alloy and 9Cr reduced-activation ferritic/martensitic(RAFM)alloy.The microstructural evolution of the bonding interface was investigated by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),and transmission electron microscopy(TEM).The results verify that the pinning effect of nano-oxides particles(NPs)in 9Cr ODS alloy significantly enhances its dynamic recrystallization(DRX)temperature and deformation resistance.Continuous DRX(CDRX)first occurred on the 9Cr RAFM alloy side,and the areas near the bonding interface were composed of recrystallized grains.With increasing strain,CDRX also showed up on the 9Cr ODS alloy side.Inevitable slight oxidation occurred at the bonding interface during the hot compression bonding(HCB)process,and the interfacial oxides transformed from initial coarse CrO to TiO and finally to Y-Ti-O nanoparticles with sizes comparable to pre-existing NPs dispersed in the 9Cr ODS alloy matrix.It is believed that interfacial oxide transformation and grain structure consistency contributed to the excellent interface healing of the two dissimilar alloy pieces.The effectiveness of the bonding was tested by tensile tests and fractography analysis,revealing that ideal metallurgical bonding could be achieved under a controlled strain level of 10%at 800℃ followed by soaking at 1000℃ for 4 h. 展开更多
关键词 hot compression bonding Oxide dispersion strengthened alloy Reduced-activation ferritic/martensitic alloy Dynamic recrystallization Interfacial oxides
原文传递
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:5
5
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
在线阅读 下载PDF
Hot compression behavior and deformation microstructure of Mg-6Zn-1Al-0.3Mn magnesium alloy 被引量:4
6
作者 史宝良 罗天骄 +1 位作者 王晶 杨院生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2560-2567,共8页
The hot compression behavior of a wrought Mg-6Zn-1Al-0.3Mn magnesium alloy was investigated using Gleeble test at 200-400 °C with strain rates ranging from 0.01 to 7 s-1. The true stress-strain curves show that t... The hot compression behavior of a wrought Mg-6Zn-1Al-0.3Mn magnesium alloy was investigated using Gleeble test at 200-400 °C with strain rates ranging from 0.01 to 7 s-1. The true stress-strain curves show that the hot deformation behavior significantly depends on the deformation temperature and strain rate. The calculated hot deformation activation energy Q is 166 kJ/mol with a stress exponent n=5.99, and the constitutive equation is deduced to be ε& =3.16×1013[sinh(0.010σ)]5.99exp [-1.66×105/(RT)]· Deformation microstructure shows that the incompletely dynamically recrystallized grains can be found at grain boundaries and twins with the strain rates ranging from 0.01 to 1 s^-1 at 250 °C, and completely dynamic recrystallization occurs when the temperature is 350 °C or above during hot compression, the size of recrystallized grains decreases with the increment of the strain rate at the same temperature. The relatively suitable deformation condition is considered temperature 330-400 °C and strain rate of 0.01-0.03 s-1, and temperature of 350 °C and strain rate of 1 s-1. 展开更多
关键词 wrought magnesium alloy hot compression STRESS STRAIN RECRYSTALLIZATION
在线阅读 下载PDF
Dynamic recrystallization mechanisms during hot compression of Mg-Gd-Y-Nd-Zr alloy 被引量:2
7
作者 吴懿萍 张新明 +3 位作者 邓运来 唐昌平 杨柳 仲莹莹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1831-1839,共9页
Hot compression tests were conducted on a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy at 450 ℃ and a strain rate of 2 s-1. Dynamic recrystallization (DRX) mechanisms were investigated by optical microscope (OM), scanni... Hot compression tests were conducted on a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy at 450 ℃ and a strain rate of 2 s-1. Dynamic recrystallization (DRX) mechanisms were investigated by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM) systematically. The crystallographic orientation information is obtained through electron back-scattering diffraction (EBSD). The result shows that the flow stress firstly reaches a peak rapidly followed by declining to a valley, and then increases gradually again when the alloy is compressed to a strain of-1.88. DRX related to {10]2} tensile twins is extensively observed at small strains, resulting in an evident grain refinement. DRX grains first nucleate along the edges of twin boundaries with about 30~ (0001) off the twin parents. While at large strains, conventional continuous DRX (CDRX) is frequently identified by the formation of small DRX grains along the original grain boundaries and the continuously increasing misorientation from the centre of large original grains to the grain boundaries. Evidence of particle-stimulated nucleation (PSN) is also observed in the present alloy. 展开更多
关键词 Mg-RE alloy hot compression TWIN dynamic recrystallization mechanism
在线阅读 下载PDF
Interaction among deformation, recrystallization and phase transformation of TA2 pure titanium during hot compression 被引量:3
8
作者 李凯 杨平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1863-1870,共8页
TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with differen... TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with different processing parameters. Variant selection induced by stress during cooling after compression was found. The prismatical texture component which featured that the [0001] direction perpendicular to the compressing direction produced preferentially under the compressing stress. As a result, the transformedα phase possesses strong prismatical texture which is different with the basal texture of compressed αphase. The minimum elastic strain energy is demonstrated to be the main reason that causes the variant selection. Dynamic recrystallization behavior and microstructure evolution during hot compression were also studied. 展开更多
关键词 pure titanium hot compression phase transformation TEXTURE variant selection
在线阅读 下载PDF
Effects of hot compression on carbide precipitation behavior of Ni-20Cr-18W-1Mo superalloy
9
作者 韩寅奔 薛祥义 +2 位作者 张铁邦 胡锐 李金山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2883-2891,共9页
The effect of hot compression on the grain boundary segregation and precipitation behavior of M6C carbide in theNi-20Cr-18W-1Mo superalloy was investigated by thermomechanical simulator, scanning electronic microscope... The effect of hot compression on the grain boundary segregation and precipitation behavior of M6C carbide in theNi-20Cr-18W-1Mo superalloy was investigated by thermomechanical simulator, scanning electronic microscope (SEM) and X-raydiffraction (XRD). Results indicate that the amount of M6C carbides obviously increases in the experimental alloy after hotcompression. Composition analyses reveal that secondary M6C carbides at grain boundaries are highly enriched in tungsten.Meanwhile, the secondary carbide size of compressive samples is 3?5 μm in 10% deformation degree, while the carbide size ofundeformed specimens is less than 1 μm under aging treatment at 900 and 1000 ℃. According to the thermodynamic calculationresults, the Gibbs free energy of γ-matrix and carbides decreases with increase of the compression temperature, and the W-rich M6Ccarbide is more stable than Cr-rich M23C6. Compared with the experimental results, it is found that compressive stress accelerates theW segregation rate in grain boundary region, and further rises the rapid growth of W-rich M6C as compared with the undeformedone. 展开更多
关键词 Ni-20Cr-18W-1Mo superalloy hot compression grain boundary segregation carbide precipitation
在线阅读 下载PDF
Thermal activation parameters of V-5Cr-5Ti alloy under hot compression
10
作者 李鱼飞 王震宏 +2 位作者 周运洪 罗超 赖新春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2564-2570,共7页
In order to well understand the elementary mechanisms that govern the hot working process of a V?5Cr?5Ti alloy (mass fraction, %), thermal activation parameters under compression were measured in a temperature ran... In order to well understand the elementary mechanisms that govern the hot working process of a V?5Cr?5Ti alloy (mass fraction, %), thermal activation parameters under compression were measured in a temperature range of 1373?1673 K by a Gleeble?3800 system. The results show that the stress exponentn is 4.87 and the activation energyQis 375.89 kJ/mol for the power law equation. The activation energy is determined as 288.34 kJ/mol, which is close to the self-diffusion energy of alloy (270?300 kJ/mol) by introducing a threshold stress(σ0) variable. The typical values of physical activation volume (Vp) and strain rate sensitivity (m) are measured as (120?700)b3 and 0.075?0.122, respectively, by the repeated stress relaxation tests. These activation parameters indicate that the rate controlling mechanism for V?5Cr?5Ti alloy compressed in ranges of 1373?1673 K and 0.001?1.0 s?1 is the dislocation climb by overcoming of forest dislocations. 展开更多
关键词 V-5Cr-5Ti alloy hot compression thermal activation dislocation climb
在线阅读 下载PDF
Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures 被引量:6
11
作者 杨群英 杨东 +4 位作者 张志清 曹玲飞 吴晓东 黄光杰 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期649-657,共9页
The flow behavior and microstructure evolution of 6A82 aluminum alloy (Al?Mg?Si?Cu) with high copper content were studied on a Gleeble?1500 system by isothermal hot compression test in the temperature range from 320 t... The flow behavior and microstructure evolution of 6A82 aluminum alloy (Al?Mg?Si?Cu) with high copper content were studied on a Gleeble?1500 system by isothermal hot compression test in the temperature range from 320 to 530 °C and the strain rate range from 0.001 to 10 s?1. The results reveal that the flow stress of the alloy exhibits a continuous flow softening behavior at low temperatures of 320?390 °C, whereas it reaches steady state at high temperatures (≥460°C), which are influenced greatly by the Zener?Hollomon parameter (Z) in the hyperbolic sine with the hot deformation activation energy of 325.12 kJ/mol. Microstructure characterizations show that prominent dynamic recrystallization and coarsening of dynamic precipitation may be responsible for the continuous flow softening behavior. Due to deformation heating at high strain rates (≥1 s?1), dynamic recrystallization is more prominent in the specimen deformed at 530 °C and 10 s?1 than in the specimen deformed at 460 °C and 0.1 s?1 even though they have very close lnZ values. 展开更多
关键词 Al-Mg-Si-Cu aluminum alloy isothermal hot compression flow stress dynamic recrystallization dynamic precipitation
在线阅读 下载PDF
Flow stress behavior and processing map of extruded 7075Al/SiC particle reinforced composite prepared by spray deposition during hot compression 被引量:2
12
作者 吴红丹 张辉 +1 位作者 陈爽 傅定发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期692-698,共7页
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st... Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation. 展开更多
关键词 7075 Al SIC particle-reinforced composite hot compression deformation flow stress processing map superplastic deformation
在线阅读 下载PDF
Strain-induced α-to-β phase transformation during hot compression in Ti-5Al-5Mo-5V-1Cr-1Fe alloy 被引量:12
13
作者 Kai LI Ping YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期296-304,共9页
The dynamic phase transformation of Ti-5Al-5Mo-5V-1Cr-1Fe alloy during hot compression below theβtransus temperature was investigated.Strain-inducedα-to-βtransformation is observed in the samples compressed at 0-10... The dynamic phase transformation of Ti-5Al-5Mo-5V-1Cr-1Fe alloy during hot compression below theβtransus temperature was investigated.Strain-inducedα-to-βtransformation is observed in the samples compressed at 0-100 K below theβtransus temperature.The deformation stored energy by compression provides a significant driving force for theα-to-βphase transformation.The re-distribution of the solute elements induced by defects during deformation promotes the occurrence of dynamic transformation.Orientation dependence for theα-to-βphase transformation promotion is observed between{100}-orientated grains and{111}-orientated grains.Incomplete recovery in{111}-orientated grains would create a large amount of diffusion channels,which is in favor of theα-to-βtransformation.The effects of reduction ratio and strain rate on the dynamic phase transformation were also investigated. 展开更多
关键词 titanium alloy hot compression phase transformation orientation dependence
在线阅读 下载PDF
Hot Compression Behavior of As-Cast Precipitation-Hardening Stainless Steel 被引量:10
14
作者 A Momeni S M Abbasi A Shokuhfar 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期66-70,共5页
High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain ra... High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain rates of 0. 001--1 s^-1. Flow behavior of this alloy was investigated and it was realized that dynamic recrystallization (DRX) was responsible for flow softening. The correlation between critical strain for initiation of DRX and de- formation parameters including temperature and strain rate, and therefore, Zener-Hollomon parameter (Z) was studied. Metallographic observation was performed to determine the as-deformed microstructure. Microstructural observation shows that recrystallized grain size increases with increasing the temperature and decreasing the strain rate. The activation energy required for DRX of the investigated steel was determined using correlations of flow stress versus temperature and strain rate. The calculated value of activation energy, 460 kJ/mol, is in accordance with other studies on stainless steels. The relationship between peak strain and Z parameter is proposed. 展开更多
关键词 hot compression precipitation hardening stainless steel dynamic recrystallization
在线阅读 下载PDF
Constitutive equation and model validation for a 31 vol.% B_4Cp/6061Al composite during hot compression 被引量:9
15
作者 L. Zhou C. Cui +3 位作者 Q.Z. Wang C. Li B.L. Xiao Z.Y. Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1730-1738,共9页
An accurate constitutive equation is essential to understanding the flow behavior of B4C/A1 compos-ites during the hot deformation. However, the constitutive equations developed previously in literature are generally ... An accurate constitutive equation is essential to understanding the flow behavior of B4C/A1 compos-ites during the hot deformation. However, the constitutive equations developed previously in literature are generally for low strain rate deformation. In the present work, we modified the general consti-tutive equation and take the high strain rate correction into account. The constitutive equation for a 31 vol.% B4Cp/6061AI composite was constructed based on the flow stresses measured during isothermal hot compression at temperatures ranging from 375 to 525 ℃ and strain rates from 0.01 to 10 s^-1. The experimental flow stresses were corrected by considering temperature-dependent Arrhenius factor. The modified equation was then verified by using DEFORM-3D finite element analysis to simulate the exper-imental hot compression process. The results show that the modified equation successfully predicts flow stress, load-displacement, and the temperature rise. This helps to optimize the hot deformation process, and to obtain desirable properties, such as reduced porosity and homogenous particle distribution in B4C/AI composites. 展开更多
关键词 COMPOSITES B4C/AI Constitutive equation hot compression Finite element simulation
原文传递
Microstructure and texture evolution of TB8 titanium alloys during hot compression 被引量:8
16
作者 Qiu-Yue Yang Min Ma +3 位作者 Yuan-Biao Tan Song Xiang Fei Zhao Yi-Long Liang 《Rare Metals》 SCIE EI CAS CSCD 2021年第10期2917-2926,共10页
In this study, microstructure and texture evolution of TB8 titanium alloys during hot deformation were investigated by using electron back-scattered diffraction(EBSD) analysis. The results showed that dynamic recrysta... In this study, microstructure and texture evolution of TB8 titanium alloys during hot deformation were investigated by using electron back-scattered diffraction(EBSD) analysis. The results showed that dynamic recrystallization(DRX) behavior of TB8 titanium alloys was drastically sensitive to the strain. As the true strain raised from 0.2 to 0.8, the degree of DRX gradually increased. The nucleation mechanism of recrystallization was observed, including discontinuous dynamic recrystallization(DDRX) resulting from the bulging of original boundaries. Furthermore, continuous dynamic recrystallization(CDRX) occurred because of the transformation of low-angle grain boundaries(LAGBs) to high-angle grain boundaries(HAGBs) in the interior of the original deformed grains. The texture evolution of TB8 titanium alloy during hot deformation process was analyzed in detail, and five texture components were observed,including{001}h100 i,{011}h100 i,{112}h110 i,{111}h110 i, and {111}h112 i. As the true strain increased,deformation textures were gradually weakened due to an increase in the volume fraction of DRX grains. When the true strain was 0.8, the main texture components consisted of the recrystallization texture components of the{001}h100 i and {011}h100 i textures. 展开更多
关键词 TB8 titanium alloys hot compression MICROSTRUCTURE Texture evolution
原文传递
Static softening behaviors of 7055 alloy during the interval time of multi-pass hot compression 被引量:6
17
作者 Liang-Ming Yan Jian Shen +1 位作者 Jun-Peng Li Bai-Ping Mao 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期241-246,共6页
Multipass plain strain compression test of 7055 alloy was carried out on Gleeble 1500D thermomechanical simulator to study the effect of interval time on static softening behavior between two passes. Microstructural f... Multipass plain strain compression test of 7055 alloy was carried out on Gleeble 1500D thermomechanical simulator to study the effect of interval time on static softening behavior between two passes. Microstructural features of the alloy deformed with delay times varying from 0 to 180 s after achieving a reduction of ,-~52 % in the 13 stages was investigated through TEM and EBSD observations. The 14th pass of peak stresses after different delay times were gained. The peak stress decreases with the interstage delay time increasing, but the decreasing trend is gradually slower. Static recovery, metadynamic recrystallization, and/or static recrystallization can be found in the alloy during two passes. The recovery and recrystallization degree increases with longer interstage delay time. The static recovery is the main softening mechanism. Subgrain coalescence and subgrain growth together with particle-stimulated nucleation are the main nucleation mechanisms for static recrystallization. 展开更多
关键词 7055 aluminum alloy hot compression Microstructure Interval time
在线阅读 下载PDF
Effects of process parameters on the microstructure during the hot compression of a TC6 titanium alloy 被引量:5
18
作者 LIMiaoquan XIONGAiming +3 位作者 CHENGShenghui HUANGWeichao LIYuanchun LINHai 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期263-268,共6页
The effects of process parameters on the microstructural evolution, includinggrain size and volume traction of the a phase during hot forming of a TC6 alloy were investigatedusing compression tests. Experiments were c... The effects of process parameters on the microstructural evolution, includinggrain size and volume traction of the a phase during hot forming of a TC6 alloy were investigatedusing compression tests. Experiments were conducted on the material with (α + β) phases atdeformation temperatures of 800, 860, 920, and 950℃, strain rates of 0.001, 0.01, 1, and 50 s^(-1),and height direction reductions of 30%, 40%, and 50%. After reaching a peak value near 920℃, thegrain size and volume fraction decrease with further increase of deformation temperature. The strainrate affects the morphologies and grain size of α phase of the TC6 titanium alloy. At a lowerstrain rate, the effect of the strain rate on the volume fraction is greater than that at a higherstrain rate under the experimental conditions. The effects of the strain rate on the microstructurealso result from deformation heating. The grain size of the α phase increases with an increase inheight direction reduction after an early drop. The effect of height direction reduction on thevolume fraction is similar to that of the grain size. All of the optical micrographs andquantitative metallography show that deformation process parameters affect the microstructure duringhot forming of the TC6 alloy, and a correlation between the temperature, strain, and strain rateappears to be a significant fuzzy characteristic. 展开更多
关键词 titanium alloy hot compression microstructure variables processparameters grain size
在线阅读 下载PDF
Microstructural evolution,flow stress and constitutive modeling of Al−1.88Mg−0.18Sc−0.084Er alloy during hot compression 被引量:5
19
作者 Fu-rong CAO Bin YIN +3 位作者 Si-yuan LIU Lu SHI Shun-cheng WANG Jing-lin WEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期53-73,共21页
To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their... To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their hot compression behavior was investigated at temperatures of 673−793 K and strain rates of 0.001−10 s−1;the microstructures were characterized by optical microscope,X-ray diffractometer,transmission electron microscope,and electron backscattered diffractometer,and the flow stresses were obtained by thermal compression simulator.Microstructural evolution and flow curves reveal that dynamic recovery is the dominant softening mechanism.Continuous dynamic recrystallization followed by dynamic grain growth takes place at a temperature of 773 K and a strain rate of 0.001 s−1;the yielding drop phenomenon was discovered.Hyperbolic sine constitutive equation incorporating dislocation variables was presented,and a power law constitutive equation was established.The stress exponent is 3.262,and the activation energy for deformation is 154.465 kJ/mol,indicating that dislocation viscous glide is the dominant deformation mechanism. 展开更多
关键词 Al−Mg alloy ECAP-Conform hot compression microstructure flow stress constitutive equation
在线阅读 下载PDF
Effect of temperature on microstructure and texture evolution of Mg-Zn-Er alloy during hot compression 被引量:4
20
作者 Jin-xue LIU Ke LIU +4 位作者 Wen-bo DU Shu-bo LI Zhao-hui WANG Xian DU Cui-cui SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2215-2226,共12页
The microstructure and texture evolutions in Mg-Zn-Er alloy during hot compression were investigated by using opticalmicroscope (OM), field emission scanning electron microscope (EBSD) and transmission electron mi... The microstructure and texture evolutions in Mg-Zn-Er alloy during hot compression were investigated by using opticalmicroscope (OM), field emission scanning electron microscope (EBSD) and transmission electron microscope (TEM). The resultsindicate that the temperature plays an important role in dynamic recrystallization (DRX) mechanism. The twin dynamicrecrystallization (TDRX) is induced at a strain of 0.6 because of the activation of non-basal slip (a+c ) dislocations at 200 ℃.Meanwhile, the continuous DRX (CDRX) occurs at 350℃, which is identified by the typical necklace-like structure around theresidual initial grains. The DRX contributes to the modification of texture significantly. The tension twins are responsible for theweak texture at 200 ℃. Meanwhile, the decrease in the basal texture is ascribed to the DRX sites which transfer from twinboundaries to initial grain boundaries as the temperature is increased from 200 to 350 ℃. 展开更多
关键词 Mg-Zn-Er alloy hot compression dynamic recrystallization TWINNING TEXTURE
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部