Soil infiltration is a very important concept in hydrology as well as irrigation, which plays a vital role in estimating surface runoff and groundwater recharge. It is a complicated process that varies with numerous f...Soil infiltration is a very important concept in hydrology as well as irrigation, which plays a vital role in estimating surface runoff and groundwater recharge. It is a complicated process that varies with numerous factors. Accurate estimation of soil infiltration is required for future irrigation, and many other purposes. To estimate the infiltration process, there are numerous models. The majority of them have some presumptions, a unique calculation method, and some limitations. The purpose of the paper was to assess the model’s performance for a similar hypothetical scenario involving soil infiltration. It compared the infiltration rate, runoff rate, and incremental infiltration versus time for three different infiltration models: the Green-Ampt model (GA), the Horton model and the Modified Green-Ampt (MGA) model. A spreadsheet was used to calculate the Horton model, and HYDROL-INF (V 5.03) was used to simulate the other two models. Among those three models, the MGA model outperformed those three models, while the GA model produced greater infiltration rate than rainfall, which was insensible. The study showed that the MGA model, which provides useful infiltration predictions, outperformed the other two infiltration models. Since the Horton model does not consider ponding conditions, it is only applicable when the effective rainfall intensity exceeds the final infiltration capacity. Moreover, the GA model’s initial infiltration rate is irrational because it disregards the intensity of the rainfall. The results of this study will assist in selecting the most accurate method for estimating soil infiltration for agricultural purposes.展开更多
As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to descri...As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to describe the process of soil infiltration. Although these models have been successfully used to evaluate the soil infiltration in different scenarios in agricultural fields, little effort has been devoted to assess their performances in arid and semi-arid soils after the addition of biochar. A laboratory experiment was performed to study the infiltration characteristics of two typical Loess Plateau soils at three particle sizes(2–1, 1–0.25, and 〈0.25 mm) and five biochar application amounts(0, 10, 50, 100, and 150 g/kg). The performance of five models(i.e., the Philip model, Kostiakov model, Mezencev model, USDA-NRCS model, and Horton model) in simulating the infiltration process was then evaluated based on the adjusted coefficient of determination and a reduced Chi-Square test. Results indicated that the Horton model best simulated the water-infiltration process in an aeolian sandy soil with added biochar. However, the Mezencev model best simulated the infiltration process in a loamy clay soil(Eum-Orthic Anthrosol). The three-parameter model, i.e., Mezencev and Horton models can better describe the relationship between cumulative infiltration and infiltration time. In conclusion, biochar reduced the soil infiltration capacity of the aeolian sandy soil and increased that of the Eum-Orthic Anthrosol.展开更多
城市雨洪模型是研究城市内涝形成规律及演进过程的重要手段,但在我国城市化进程加速、雨水内涝监测能力不足的背景下,模型参数率定和应用面临挑战。为解决缺乏实测雨洪数据条件下城市雨洪模型参数校准的难题,本文提出了根据地理和气候...城市雨洪模型是研究城市内涝形成规律及演进过程的重要手段,但在我国城市化进程加速、雨水内涝监测能力不足的背景下,模型参数率定和应用面临挑战。为解决缺乏实测雨洪数据条件下城市雨洪模型参数校准的难题,本文提出了根据地理和气候特征计算雨水径流量的动态径流系数法和基于城市功能区的Storm Water Management Model(SWMM)参数率定方法。在福建省三明市的应用表明:动态径流系数法与规范和经验公式结果一致,与传统方法相比则能反映降雨产流随雨强、下渗等因素变化的规律,更符合城市降雨产流的实际过程。基于城市功能区的参数率定方法结果与研究区城市化水平和下垫面特征相符。率定后雨水径流过程NSE值达到0.80,雨水总径流量误差处于6%以内,洪峰时间误差小于3分钟。本文提出的方法可为缺乏实测雨洪数据地区的城市雨洪模拟提供参考。展开更多
文摘Soil infiltration is a very important concept in hydrology as well as irrigation, which plays a vital role in estimating surface runoff and groundwater recharge. It is a complicated process that varies with numerous factors. Accurate estimation of soil infiltration is required for future irrigation, and many other purposes. To estimate the infiltration process, there are numerous models. The majority of them have some presumptions, a unique calculation method, and some limitations. The purpose of the paper was to assess the model’s performance for a similar hypothetical scenario involving soil infiltration. It compared the infiltration rate, runoff rate, and incremental infiltration versus time for three different infiltration models: the Green-Ampt model (GA), the Horton model and the Modified Green-Ampt (MGA) model. A spreadsheet was used to calculate the Horton model, and HYDROL-INF (V 5.03) was used to simulate the other two models. Among those three models, the MGA model outperformed those three models, while the GA model produced greater infiltration rate than rainfall, which was insensible. The study showed that the MGA model, which provides useful infiltration predictions, outperformed the other two infiltration models. Since the Horton model does not consider ponding conditions, it is only applicable when the effective rainfall intensity exceeds the final infiltration capacity. Moreover, the GA model’s initial infiltration rate is irrational because it disregards the intensity of the rainfall. The results of this study will assist in selecting the most accurate method for estimating soil infiltration for agricultural purposes.
基金supported by the National Natural Science Foundation of China (41571225)the National Key Research and Development Program of China (2016YFC0501702, 2015BAC01B01)
文摘As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to describe the process of soil infiltration. Although these models have been successfully used to evaluate the soil infiltration in different scenarios in agricultural fields, little effort has been devoted to assess their performances in arid and semi-arid soils after the addition of biochar. A laboratory experiment was performed to study the infiltration characteristics of two typical Loess Plateau soils at three particle sizes(2–1, 1–0.25, and 〈0.25 mm) and five biochar application amounts(0, 10, 50, 100, and 150 g/kg). The performance of five models(i.e., the Philip model, Kostiakov model, Mezencev model, USDA-NRCS model, and Horton model) in simulating the infiltration process was then evaluated based on the adjusted coefficient of determination and a reduced Chi-Square test. Results indicated that the Horton model best simulated the water-infiltration process in an aeolian sandy soil with added biochar. However, the Mezencev model best simulated the infiltration process in a loamy clay soil(Eum-Orthic Anthrosol). The three-parameter model, i.e., Mezencev and Horton models can better describe the relationship between cumulative infiltration and infiltration time. In conclusion, biochar reduced the soil infiltration capacity of the aeolian sandy soil and increased that of the Eum-Orthic Anthrosol.
文摘城市雨洪模型是研究城市内涝形成规律及演进过程的重要手段,但在我国城市化进程加速、雨水内涝监测能力不足的背景下,模型参数率定和应用面临挑战。为解决缺乏实测雨洪数据条件下城市雨洪模型参数校准的难题,本文提出了根据地理和气候特征计算雨水径流量的动态径流系数法和基于城市功能区的Storm Water Management Model(SWMM)参数率定方法。在福建省三明市的应用表明:动态径流系数法与规范和经验公式结果一致,与传统方法相比则能反映降雨产流随雨强、下渗等因素变化的规律,更符合城市降雨产流的实际过程。基于城市功能区的参数率定方法结果与研究区城市化水平和下垫面特征相符。率定后雨水径流过程NSE值达到0.80,雨水总径流量误差处于6%以内,洪峰时间误差小于3分钟。本文提出的方法可为缺乏实测雨洪数据地区的城市雨洪模拟提供参考。