This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is fur...This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is further transformed into its normal form whose coefficients are determined by that of the original system. The dynamics of the map near the Hopf-flip bifurcation point is approximated by a so called “time-2τ^2 map” of a planar autonomous differential equation. It is shown that high dimensional maps may result in cycles of period two, tori T^1 (Hopf invariant circles), tori 2T^1 and tori 2T^2 depending both on how the critical eigenvalues pass the unit circle and on the signs of resonant terms' coefficients. A two-degree-of-freedom vibro-impact system is given as an example to show how the procedure of this paper works. It reveals that through Hopf-flip bifurcations, periodic motions may lead directly to different types of motion, such as subharmonic motions, quasi-periodic motions, motions on high dimensional tori and even to chaotic motions depending both on change in direction of the parameter vector and on the nonlinear terms of the first three orders.展开更多
The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory...The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.展开更多
In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center man...In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.展开更多
The discrete mathematical model for the respiratory process in bacterial culture obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using cen...The discrete mathematical model for the respiratory process in bacterial culture obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory, condition of existence of chaos in the sense of Marotto's definition of chaos is proved. The bifurcation diagrams, Lyapunov exponents and phase portraits are given for different parameters of the model, and the fractal dimension of chaotic attractor was also calculated. The numerical simulation results confirm the theoretical analysis and also display the new and complex dynamical behaviors compared with the continuous model. In particular~ we found that the new chaotic attractor, and new types of two or four coexisting chaotic attractors, and two coexisting invariant torus.展开更多
In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using cen...In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse period- doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.展开更多
基金The project supported by the Nutional Natural Science Foundation of China(10472096)
文摘This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is further transformed into its normal form whose coefficients are determined by that of the original system. The dynamics of the map near the Hopf-flip bifurcation point is approximated by a so called “time-2τ^2 map” of a planar autonomous differential equation. It is shown that high dimensional maps may result in cycles of period two, tori T^1 (Hopf invariant circles), tori 2T^1 and tori 2T^2 depending both on how the critical eigenvalues pass the unit circle and on the signs of resonant terms' coefficients. A two-degree-of-freedom vibro-impact system is given as an example to show how the procedure of this paper works. It reveals that through Hopf-flip bifurcations, periodic motions may lead directly to different types of motion, such as subharmonic motions, quasi-periodic motions, motions on high dimensional tori and even to chaotic motions depending both on change in direction of the parameter vector and on the nonlinear terms of the first three orders.
基金Supported by the Scientific Research Programmes of Colleges in Anhui(KJ2013Z186)
文摘The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.
基金Supported by the National Natural Science Foundation of China (No. 11071066)
文摘In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.
基金Supported by the National Natural Science Foundation of China(10671063 and 10801135)the Scientific Research Foundation of Hunan Provincial Education Department(09C255)
文摘The discrete mathematical model for the respiratory process in bacterial culture obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory, condition of existence of chaos in the sense of Marotto's definition of chaos is proved. The bifurcation diagrams, Lyapunov exponents and phase portraits are given for different parameters of the model, and the fractal dimension of chaotic attractor was also calculated. The numerical simulation results confirm the theoretical analysis and also display the new and complex dynamical behaviors compared with the continuous model. In particular~ we found that the new chaotic attractor, and new types of two or four coexisting chaotic attractors, and two coexisting invariant torus.
基金Supported by the National Natural Science Foundation of China (No. 11071066)
文摘In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse period- doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.