In this paper, a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed: latent computers have lower infection ability than infectious computers....In this paper, a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed: latent computers have lower infection ability than infectious computers. With the aid of the bifurcation theory, sufficient conditions for stability of the infected equilibrium of the model and existence of the Hopf bifurcation are established. In particular, explicit formulae which determine direction and stability of the Hopf bifurcation are derived by means of the normal form theory and the center manifold reduction for functional differential equations. Finally, a numerical example is given in order to show the feasibility of the obtained theoretical findings.展开更多
In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth...In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth rate of the predator as the parameter, we give a computational and theoretical analysis of Hopf bifurcation on the positive equilibrium for the ODE system. As well, we have discussed the conditions for determining the bifurcation direction and the stability of the bifurcating periodic solutions.展开更多
The ecological model of a class of the two microbe populations with second-order growth rate was studied. The methods of qualitative theory of ordinary differential equations were used in the four-dimension phase spac...The ecological model of a class of the two microbe populations with second-order growth rate was studied. The methods of qualitative theory of ordinary differential equations were used in the four-dimension phase space. The qualitative property and stability of equilibrium points were analysed. The conditions under which the positive equilibrium point exists and becomes and O+ attractor are obtained. The problems on Hopf bifurcation are discussed in detail when small perturbation occurs.展开更多
This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of...This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of the positive equilibrium and existence of Hopf bifurcation are obtained by regarding the time delay as the bifurcation parameter. Further,the properties of Hopf bifurcation such as the direction and stability are investigated by using the normal form theory and center manifold argument. Finally,some numerical simulations are presented to verify the theoretical analysis.展开更多
基金supported by Natural Science Foundation of Anhui Province (Nos. 1608085QF145, 1608085QF151)Project of Support Program for Excellent Youth Talent in Colleges and Universities of Anhui Province (No. gxyqZD2018044)
文摘In this paper, a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed: latent computers have lower infection ability than infectious computers. With the aid of the bifurcation theory, sufficient conditions for stability of the infected equilibrium of the model and existence of the Hopf bifurcation are established. In particular, explicit formulae which determine direction and stability of the Hopf bifurcation are derived by means of the normal form theory and the center manifold reduction for functional differential equations. Finally, a numerical example is given in order to show the feasibility of the obtained theoretical findings.
文摘In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth rate of the predator as the parameter, we give a computational and theoretical analysis of Hopf bifurcation on the positive equilibrium for the ODE system. As well, we have discussed the conditions for determining the bifurcation direction and the stability of the bifurcating periodic solutions.
文摘The ecological model of a class of the two microbe populations with second-order growth rate was studied. The methods of qualitative theory of ordinary differential equations were used in the four-dimension phase space. The qualitative property and stability of equilibrium points were analysed. The conditions under which the positive equilibrium point exists and becomes and O+ attractor are obtained. The problems on Hopf bifurcation are discussed in detail when small perturbation occurs.
基金National Natural Science Foundation of China(No.61273070)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of the positive equilibrium and existence of Hopf bifurcation are obtained by regarding the time delay as the bifurcation parameter. Further,the properties of Hopf bifurcation such as the direction and stability are investigated by using the normal form theory and center manifold argument. Finally,some numerical simulations are presented to verify the theoretical analysis.