期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
Approximate Homomorphic Encryption for MLaaS by CKKS with Operation-Error-Bound
1
作者 Ray-I Chang Chia-Hui Wang +1 位作者 Yen-Ting Chang Lien-Chen Wei 《Computers, Materials & Continua》 2025年第10期503-518,共16页
As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be t... As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments. 展开更多
关键词 Privacy protection K-means clustering cloud computing approximate homomorphic encryption fully homomorphic encryption
在线阅读 下载PDF
A Privacy Protection Scheme for Verifiable Data Element Circulation Based on Fully Homomorphic Encryption
2
作者 Song Jiyuan Gao Hongmin +3 位作者 Ye Keke Shen Yushi Ma Zhaofeng Feng Chengzhi 《China Communications》 2025年第4期223-235,共13页
With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in p... With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in privacy protection and data verification,especially for sensitive data.Existing schemes often suffer from inefficiency and high overhead.We propose a privacy protection scheme using BGV homomorphic encryption and Pedersen Secret Sharing.This scheme enables secure computation on encrypted data,with Pedersen sharding and verifying the private key,ensuring data consistency and immutability.The blockchain framework manages key shards,verifies secrets,and aids security auditing.This approach allows for trusted computation without revealing the underlying data.Preliminary results demonstrate the scheme's feasibility in ensuring data privacy and security,making data available but not visible.This study provides an effective solution for data sharing and privacy protection in blockchain applications. 展开更多
关键词 blockchain technology data element cir-culation data privacy homomorphic encryption se-cret sharing trusted computation
在线阅读 下载PDF
Homomorphic Encryption for Machine Learning Applications with CKKS Algorithms:A Survey of Developments and Applications
3
作者 Lingling Wu Xu An Wang +7 位作者 Jiasen Liu Yunxuan Su Zheng Tu Wenhao Liu Haibo Lei Dianhua Tang Yunfei Cao Jianping Zhang 《Computers, Materials & Continua》 2025年第10期89-119,共31页
Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(M... Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(ML)has expanded its applications into intelligent recommendation systems,autonomous driving,medical diagnosis,and financial risk assessment.However,it relies on massive datasets,which contain sensitive personal information.Consequently,Privacy-Preserving Machine Learning(PPML)has become a critical research direction.To address the challenges of efficiency and accuracy in encrypted data computation within PPML,Homomorphic Encryption(HE)technology is a crucial solution,owing to its capability to facilitate computations on encrypted data.However,the integration of machine learning and homomorphic encryption technologies faces multiple challenges.Against this backdrop,this paper reviews homomorphic encryption technologies,with a focus on the advantages of the Cheon-Kim-Kim-Song(CKKS)algorithm in supporting approximate floating-point computations.This paper reviews the development of three machine learning techniques:K-nearest neighbors(KNN),K-means clustering,and face recognition-in integration with homomorphic encryption.It proposes feasible schemes for typical scenarios,summarizes limitations and future optimization directions.Additionally,it presents a systematic exploration of the integration of homomorphic encryption and machine learning from the essence of the technology,application implementation,performance trade-offs,technological convergence and future pathways to advance technological development. 展开更多
关键词 homomorphic encryption machine learning CKKS PPML
在线阅读 下载PDF
A Fully Homomorphic Encryption Scheme Suitable for Ciphertext Retrieval
4
作者 Ronglei Hu ChuceHe +3 位作者 Sihui Liu Dong Yao Xiuying Li Xiaoyi Duan 《Computers, Materials & Continua》 2025年第7期937-956,共20页
Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To ... Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To address these problems,this paper proposes an enhanced Fully Homomorphic Encryption(FHE)algorithm based on an improved DGHV algorithm,coupled with an optimized ciphertext retrieval scheme.Our specific contributions are outlined as follows:First,we employ an authorization code to verify the user’s retrieval authority and perform hierarchical access control on cloud storage data.Second,a triple-key encryption mechanism,which separates the data encryption key,retrieval authorization key,and retrieval key,is designed.Different keys are provided to different entities to run corresponding system functions.The key separation architecture proves particularly advantageous in multi-verifier coexistence scenarios,environments involving untrusted third-party retrieval services.Finally,the enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries with similarity-ranked results,thereby significantly improving both the functionality and usability of the FHE system. 展开更多
关键词 Cloud storage homomorphic encryption ciphertext retrieval identity authentication
在线阅读 下载PDF
Enhancing IoT Data Security with Lightweight Blockchain and Okamoto Uchiyama Homomorphic Encryption 被引量:1
5
作者 Mohanad A.Mohammed Hala B.Abdul Wahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1731-1748,共18页
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol... Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm. 展开更多
关键词 Blockchain IOT integration of IoT and blockchain consensus algorithm Okamoto Uchiyama homomorphic encryption lightweight blockchain
在线阅读 下载PDF
FL-EASGD:Federated Learning Privacy Security Method Based on Homomorphic Encryption 被引量:1
6
作者 Hao Sun Xiubo Chen Kaiguo Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2361-2373,共13页
Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obta... Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected. 展开更多
关键词 Federated learning homomorphic encryption privacy security stochastic gradient descent
在线阅读 下载PDF
A Method of Homomorphic Encryption 被引量:8
7
作者 XIANG Guang-li CHEN Xin-meng +1 位作者 ZHU Ping MA Jie 《Wuhan University Journal of Natural Sciences》 CAS 2006年第1期181-184,共4页
The existing homomorphie eneryption scheme is based on ring of the integer, and the possible operators are restricted to addition and multiplication only. In this paper, a new operation is defined Similar Modul. Base ... The existing homomorphie eneryption scheme is based on ring of the integer, and the possible operators are restricted to addition and multiplication only. In this paper, a new operation is defined Similar Modul. Base on the Similar Modul, the number sets of the homomorphic encryption scheme is extended to real number, and the possible operators are extended to addition, subtraction, multiplication and division. Our new approach provides a practical ways of implementation because of the extension of the operators and the number sets. 展开更多
关键词 SECURITY private homomorphism similar modul homomorphic encryption scheme
在线阅读 下载PDF
A Fully Homomorphic Encryption Scheme with Better Key Size 被引量:5
8
作者 CHEN Zhigang WANG Jian +1 位作者 ZHANG ZengNian SONG Xinxia 《China Communications》 SCIE CSCD 2014年第9期82-92,共11页
Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In this pap... Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In this paper, we propose a fully homomorphic encryption scheme based on LWE, which has better key size. Our main contributions are: (1) According to the binary-LWE recently, we choose secret key from binary set and modify the basic encryption scheme proposed in Linder and Peikert in 2010. We propose a fully homomorphic encryption scheme based on the new basic encryption scheme. We analyze the correctness and give the proof of the security of our scheme. The public key, evaluation keys and tensored ciphertext have better size in our scheme. (2) Estimating parameters for fully homomorphic encryption scheme is an important work. We estimate the concert parameters for our scheme. We compare these parameters between our scheme and Bral2 scheme. Our scheme have public key and private key that smaller by a factor of about logq than in Bral2 scheme. Tensored ciphertext in our scheme is smaller by a factor of about log2q than in Bral2 scheme. Key switching matrix in our scheme is smaller by a factor of about log3q than in Bra12 scheme. 展开更多
关键词 fully homomorphic encryption public key encryption learning with error concert parameters
在线阅读 下载PDF
Multi-Source Data Privacy Protection Method Based on Homomorphic Encryption and Blockchain 被引量:3
9
作者 Ze Xu Sanxing Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期861-881,共21页
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin... Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications. 展开更多
关键词 homomorphic encryption blockchain technology multi-source data data privacy protection privacy data processing
在线阅读 下载PDF
A secure outsourced Turing- equivalent computation scheme against semi-honest workers using fully homomorphic encryption
10
作者 方昊 胡爱群 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期267-271,共5页
A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private in... A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private information retrieval protocols based on fully homomorphic encryption are designed, so that the reading and writing of the tape of the Turing machine, as well as the evaluation of the transition function of the Turing machine, can be performed by the permitted Boolean circuits of fully homomorphic encryption schemes. This scheme overwhelms the Turing-machine-to- circuit conversion approach, which also implements the Turing-equivalent computation. The encoding of a Turing- machine-to-circuit conversion approach is dependent on both the input data and the worst-case runtime. The proposed scheme efficiently provides the confidentiality of both program and data of the delegator in the delegator-worker model of outsourced computation against semi-honest workers. 展开更多
关键词 Turing machine fully homomorphic encryption outsourced computation
在线阅读 下载PDF
A Novel Fully Homomorphic Encryption Scheme Bsed on LWE 被引量:2
11
作者 DING Yong LI Xiumin +1 位作者 Lü Haifeng LI Xinguo 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第1期84-92,共9页
Although the learning with errors(LWE)-based full homomorphic encryption scheme was the first example of deviation from the original Gentry's blueprint, the scheme did not give detailed conversion process of circui... Although the learning with errors(LWE)-based full homomorphic encryption scheme was the first example of deviation from the original Gentry's blueprint, the scheme did not give detailed conversion process of circuit layer structure, and must rely on bootstrapping technique to achieve full homomorphism. Therefore, through modifying the re-linearization technique proposed by the above scheme, a technique called non-matrix key switching is presented, which includes key switching with re-linearization and pure key switching. The complex matrix operations of existing key switching technique are removed. Combining this technique with modulus switching, a (leveled) fully homomorphic encryption scheme without bootstrapping from LWE is constructed. In order to make circuit layer structure clear, the scheme gives detailed refresh door operation. Finally, we use bootstrapping to upgrade arithmetic circuit to any layer, and make the homomorphic computing capability of the scheme have nothing to circuit depth. 展开更多
关键词 fully homomorphic encryption re-linearization key switching modulus switching LWE BOOTSTRAPPING
原文传递
Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme 被引量:2
12
作者 Jing-Wen Zhang Xiu-Bo Chen +1 位作者 Gang Xu Yi-Xian Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期45-54,共10页
Homomorphic encryption has giant advantages in the protection of privacy information.In this paper,we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluat... Homomorphic encryption has giant advantages in the protection of privacy information.In this paper,we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation.Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources,which lower the requirements of the quantum channel,to correct the errors in non-Clifford gate evaluation.By using the set synthesized by Clifford gates and T gates,it is feasible to perform the arbitrary quantum computation on the encrypted data.Secondly,our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm.From the perspective of application,a two-party probabilistic quantum homomorphic encryption scheme is proposed.It is clear what the computation and operation that the client and the server need to perform respectively,as well as the permission to access the data.Finally,the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail.It demonstrates that the scheme has favorable security in three aspects,including privacy data,evaluated data and encryption and decryption keys. 展开更多
关键词 quantum homomorphic encryption universal quantum circuit non-maximally entangled state SECURITY
原文传递
A Secure Multiparty Quantum Homomorphic Encryption Scheme 被引量:1
13
作者 Jing-Wen Zhang Xiu-Bo Chen +4 位作者 Gang Xu Heng-Ji Li Ya-Lan Wang Li-Hua Miao Yi-Xian Yang 《Computers, Materials & Continua》 SCIE EI 2022年第11期2835-2848,共14页
The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is propose... The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is proposed,which can complete arbitrary quantum computation on the private data of multiple clients without decryption by an almost dishonest server.Firstly,each client obtains a secure encryption key through the measurement device independent quantum key distribution protocol and encrypts the private data by using the encryption operator and key.Secondly,with the help of the almost dishonest server,the non-maximally entangled states are preshared between the client and the server to correct errors in the homomorphic evaluation of T gates,so as to realize universal quantum circuit evaluation on encrypted data.Thirdly,from the perspective of the application scenario of secure multi-party computation,this work is based on the probabilistic quantum homomorphic encryption scheme,allowing multiple parties to delegate the server to perform the secure homomorphic evaluation.The operation and the permission to access the data performed by the client and the server are clearly pointed out.Finally,a concrete security analysis shows that the proposed multiparty quantum homomorphic encryption scheme can securely resist outside and inside attacks. 展开更多
关键词 Quantum homomorphic encryption secure multiparty computation almost dishonest server security
在线阅读 下载PDF
A Privacy Preserving Deep Linear Regression Scheme Based on Homomorphic Encryption 被引量:1
14
作者 Danping Dong Yue Wu +1 位作者 Lizhi Xiong Zhihua Xia 《Journal on Big Data》 2019年第3期145-150,共6页
This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domai... This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domain.At the same time,it is guaranteed that the error of the training results between the ciphertext domain and the plaintext domain is in a controllable range.After the training,the ciphertext can be decrypted and restored to the original plaintext training data. 展开更多
关键词 Linear regression somewhat homomorphic encryption machine learning
在线阅读 下载PDF
An Unbounded Fully Homomorphic Encryption Scheme Based on Ideal Lattices and Chinese Remainder Theorem 被引量:1
15
作者 Zhiyong Zheng Fengxia Liu Kun Tian 《Journal of Information Security》 2023年第4期366-395,共30页
We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. Thi... We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique. 展开更多
关键词 Fully homomorphic encryption Ideal Lattices Chinese Remainder Theorem General Compact Knapsacks Problem
在线阅读 下载PDF
High Payload Reversible Data Hiding for Encrypted Image with Homomorphic Encryption
16
作者 LI Xinyan MOU Huajian 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第5期445-451,共7页
This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts,... This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts, which are to be encrypted by applying the homomorphic application based on the Paillier algorithm. Then a serial of operations are carried out in the encrypted domain so as to embed the additional data into the encrypted image. Finally, the embedded additional data can be perfectly extracted, and the host image can be recovered without error when the marked image is decrypted directly. Security analysis, extensive experiment results and comparisons illustrate that it has high security, and the original image recovery is free of any error. Meanwhile, the embedding capacity of this algorithm is enhanced when compared with other literatures. 展开更多
关键词 reversible data hiding homomorphic encryption high payload encrypted domain
原文传递
Efficient Security Sequencing Problem over Insecure Channel Based on Homomorphic Encryption
17
作者 Mingxu Yi Lifeng Wang Yunpeng Ma 《China Communications》 SCIE CSCD 2016年第9期195-202,共8页
In the field of sequencing of secret number,an important problem is how to establish an efficient and secure protocol for sorting the secret number.As a powerful tool in solving privacy sequencing problems,secure mult... In the field of sequencing of secret number,an important problem is how to establish an efficient and secure protocol for sorting the secret number.As a powerful tool in solving privacy sequencing problems,secure multipart computation is more and more popular in anonymous voting and online auction.In the present study,related secure computation protocol for sequencing problem is not many by far.In order to improve the efficiency and safety,we propose a security sequencing protocol based on homomorphic encryption.We also give analysis of correctness and security to highlight its feasibility. 展开更多
关键词 homomorphic encryption privacy sequencing problem secure multipart compu- tation information transformation
在线阅读 下载PDF
Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption
18
作者 Xinhao Yan Siqin Zhuo +1 位作者 Yancheng Wu Bo Chen 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期551-558,共8页
The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC... The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods. 展开更多
关键词 eavesdropping attack distributed fusion estimation(DFE) homomorphic encryption computational privacy
在线阅读 下载PDF
Road Distance Computation Using Homomorphic Encryption in Road Networks
19
作者 Haining Yu Lailai Yin +3 位作者 Hongli Zhang Dongyang Zhan Jiaxing Qu Guangyao Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第12期3445-3458,共14页
Road networks have been used in a wide range of applications to reduces the cost of transportation and improve the quality of related services.The shortest road distance computation has been considered as one of the m... Road networks have been used in a wide range of applications to reduces the cost of transportation and improve the quality of related services.The shortest road distance computation has been considered as one of the most fundamental operations of road networks computation.To alleviate privacy concerns about location privacy leaks during road distance computation,it is desirable to have a secure and efficient road distance computation approach.In this paper,we propose two secure road distance computation approaches,which can compute road distance over encrypted data efficiently.An approximate road distance computation approach is designed by using Partially Homomorphic Encryption and road network set embedding.An exact road distance computation is built by using Somewhat Homomorphic Encryption and road network hypercube embedding.We implement our two road distance computation approaches,and evaluate them on the real cityscale road network.Evaluation results show that our approaches are accurate and efficient. 展开更多
关键词 Road network road distance homomorphic encryption
在线阅读 下载PDF
Novel Homomorphic Encryption for Mitigating Impersonation Attack in Fog Computing
20
作者 V.Balaji P.Selvaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2015-2027,共13页
Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probab... Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probability of offering interaction with the cloud.However,the fog computing characteristics are suscep-tible to counteract the challenges of security.The issues present with the Physical Layer Security(PLS)aspect in fog computing which included authentication,integrity,and confidentiality has been considered as a reason for the potential issues leading to the security breaches.In this work,the Octonion Algebra-inspired Non-Commutative Ring-based Fully Homomorphic Encryption Scheme(NCR-FHE)was proposed as a secrecy improvement technique to overcome the impersonation attack in cloud computing.The proposed approach was derived through the benefits of Octonion algebra to facilitate the maximum security for big data-based applications.The major issues in the physical layer security which may potentially lead to the possible security issues were identified.The potential issues causing the impersonation attack in the Fog computing environment were identified.The proposed approach was compared with the existing encryption approaches and claimed as a robust approach to identify the impersonation attack for the fog and edge network.The computation cost of the proposed NCR-FHE is identified to be significantly reduced by 7.18%,8.64%,9.42%,and 10.36%in terms of communication overhead for varying packet sizes,when compared to the benchmarked ECDH-DH,LHPPS,BF-PHE and SHE-PABF schemes. 展开更多
关键词 Fog computing physical layer security non-commutative ring-based fully homomorphic encryption impersonation attack
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部