The transport cross-section based on inflow transport approximation can significantly improve the accuracy of light water reactor(LWR)analysis,especially for the treatment of the anisotropic scattering effect.The prev...The transport cross-section based on inflow transport approximation can significantly improve the accuracy of light water reactor(LWR)analysis,especially for the treatment of the anisotropic scattering effect.The previous inflow transport approximation is based on the moderator cross-section and normalized fission source,which is approximated using transport theory.Although the accuracy of reactivity is increased,the P0 flux moment has a large error in the Monte Carlo code.In this study,an improved inflow transport approximation was introduced with homogenization techniques,applying the homogenized cross-section and accurate fission source.The numerical results indicated that the improved inflow transport approximation can increase the P0 flux moment accuracy and maintain the reactivity calculation precision with the previous inflow transport approximation in typical LWR cases.In addition to this investigation,the improved inflow transport approximation is related to the temperature factors.The improved inflow transport approximation is flexible and accurate in the treatment of the anisotropic scattering effect,which can be directly used in the temperature-dependent nuclear data library.展开更多
The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination theoretically amounts to solving a nonlinear boundar...The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination theoretically amounts to solving a nonlinear boundary value problem defined on a representative elementary volume(REV). The principle of nonlinear homogenization is illustrated based on the case of a solid phase having a Green’s strength criterion. An original refinement of the so-called secant method(based on two reference strains) is also provided. The paper also describes the main feature of the Gurson’s model which implements the principle of limit analysis on a conceptual model of hollow sphere. The last part of the paper gives some ideas concerning poromechanical couplings.展开更多
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar...The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.展开更多
In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition di...In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uni- form thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant re- flectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.展开更多
基金supported by the National Key R&D Program of China(No.2017YFC0307800-05).
文摘The transport cross-section based on inflow transport approximation can significantly improve the accuracy of light water reactor(LWR)analysis,especially for the treatment of the anisotropic scattering effect.The previous inflow transport approximation is based on the moderator cross-section and normalized fission source,which is approximated using transport theory.Although the accuracy of reactivity is increased,the P0 flux moment has a large error in the Monte Carlo code.In this study,an improved inflow transport approximation was introduced with homogenization techniques,applying the homogenized cross-section and accurate fission source.The numerical results indicated that the improved inflow transport approximation can increase the P0 flux moment accuracy and maintain the reactivity calculation precision with the previous inflow transport approximation in typical LWR cases.In addition to this investigation,the improved inflow transport approximation is related to the temperature factors.The improved inflow transport approximation is flexible and accurate in the treatment of the anisotropic scattering effect,which can be directly used in the temperature-dependent nuclear data library.
文摘The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination theoretically amounts to solving a nonlinear boundary value problem defined on a representative elementary volume(REV). The principle of nonlinear homogenization is illustrated based on the case of a solid phase having a Green’s strength criterion. An original refinement of the so-called secant method(based on two reference strains) is also provided. The paper also describes the main feature of the Gurson’s model which implements the principle of limit analysis on a conceptual model of hollow sphere. The last part of the paper gives some ideas concerning poromechanical couplings.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)the Natural Science Foundation of Jilin Province,China (Grant No. 201115222)
文摘The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.
基金supported by the Shenzhen Basic Research Project of Science and Technology under Grant No.JCYJ20120613112423982
文摘In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uni- form thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant re- flectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.