The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel ap...The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time,with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery.Remarkably,the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(C_(4)mim-Fe Cl_(4))demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins.This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts.展开更多
In this paper, the stereoselective homogeneous catalysis polymerization of phenylacetylene by using two kinds of catalysts W(CO)_5CH_3I and W(CO)_4I_2 produced from UV laser photolysis of W (CO)_6 in CH_3I, I_2—C_6H_...In this paper, the stereoselective homogeneous catalysis polymerization of phenylacetylene by using two kinds of catalysts W(CO)_5CH_3I and W(CO)_4I_2 produced from UV laser photolysis of W (CO)_6 in CH_3I, I_2—C_6H_6 and CHI_3—C_6H_6 respectively was studied. The effects of laser energy, laser irradiation time and lifetime of catalyst on the polymerization of phenylacetylene were discussed. The photoproducts of W (CO)_6 in CH_3I, I2—C_6H_6 and CHI_3—C_6I_6 were determined by IR spectra. The structures of polyphenylacetylene obtained by W (CO)_5CH_3I and W (CO)_4I_2 catalysts were characterized by IR spectra and ~1H NMR spectra.展开更多
In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly pe...In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly performed by transesterification reaction of vegetable oils with methanol and using a homogeneous or heterogeneous catalyst. This work seeks to compare the results produced in transesterification of wasted cooking oil and chicken fat by homogeneous catalysis with NaOH. Due to in each case triglyceride comes from different raw materials, operation conditions differ slightly, which is more evident in the values used for the temperature. For chicken fat was used temperature variations between 35 ℃ and 55 ℃, varying catalyst in percentages between 0.3% and 0.7% with a molar ratio 6:1 in all cases and a reaction time of I h. Likewise, the conditions used in the tmnsesterification process of waste cooking oil were temperature between 50 ℃ and 60 ℃ with a molar ratio 6/1 and 9/1 for alcohol and oil, and catalyst percentage between 0.5% and 0.7% by weight. The yields obtained were between 78% and 94%, or 83% and 95%, for chicken fat and wasted cooking oil, respectively.展开更多
Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of c...Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of catalyst-related species and the instability of catalysts at electrodes remain to be overcome.Herein,we review recent advances in electrochemical homogeneous catalysis,focusing on electrochemical noble-transition-metal catalysis,photoelectrochemical catalysis,and electrochemical enantioselective catalysis.The topics discussed include:(1)how the noblemetal catalystworks in the presence of cathodic hydrogen evolution,(2)how the photocatalyst gets enhanced redox property,and(3)how the enantioselectivity is regulated in a catalytic electrochemical reaction.展开更多
Asymmetric hydrogenation of all-carbon aromatics is still a long-standing challenge in the area of asymmetric catalysis.To date,asymmetric(transfer)hydrogenation of naphthols and phenols remains unexplored.Here,we des...Asymmetric hydrogenation of all-carbon aromatics is still a long-standing challenge in the area of asymmetric catalysis.To date,asymmetric(transfer)hydrogenation of naphthols and phenols remains unexplored.Here,we describe a new strategy for such asymmetric transformation via a bimetallic cooperative heterogeneous and homogeneous catalysis.By using HCOONa as the hydrogen source,various naphthols and phenols were partially hydrogenated in HFIP catalyzed by commercial Pd/C catalyst to give ketone intermediates.Further adding the second chiral Ru-tethered-TsDPEN catalyst and MeOH realized the asymmetric reduction of the resulting ketones in a one-pot manner,furnishing chiral alcohols with good to excellent enantioselectivity(up to 99%ee).The use of HFIP is crucial for suppressing ketone over-reduction via heterogeneous catalysis.More importantly,tandem asymmetric transfer hydrogenation of naphthols was also achieved by tuning the volume ratio of mixed HFIP/MeOH solvent,affording chiral 1,2,3,4-tetrahyronaphthols with excellent enantioselectivity but relatively low yield and limited substrate scope.展开更多
Microfluidics has received extensive attention due to its ability to rapidly prepare a large number of microdroplets with controlled sizes and defined morphologies.In addition to having large surface areas and control...Microfluidics has received extensive attention due to its ability to rapidly prepare a large number of microdroplets with controlled sizes and defined morphologies.In addition to having large surface areas and controllable confinement environments,these prepared microdroplets can be used as analytical detection devices to screen and optimize various kinetic parameters.This review summarizes recent advances in the microfluidic control of droplet-based catalytic reactions and discusses the role of these droplets in both homogeneous and heterogeneous catalyzes and in the catalysis of macromolecular biological enzymes in water-in-oil and oil-in-oil environments.Additionally,the existing problems and future development directions of droplets in catalysis are highlighted to promote the development of catalytic reactions in droplet media and provide guidance for the high-throughput screening of catalysts and the directed evolution of biological enzymes.展开更多
Catalysis is a cornerstone of modern chemistry,enabling the development of sustainable processes and the production of essential chemicals.However,a fundamental challenge in catalysis lies in understanding the nature ...Catalysis is a cornerstone of modern chemistry,enabling the development of sustainable processes and the production of essential chemicals.However,a fundamental challenge in catalysis lies in understanding the nature of the catalytic species and active centers,particularly the key mechanistic understanding of homogeneous and heterogeneous systems.This review describes the concept of“cocktail”-type catalysis,demonstrating that catalytic active species are not static but evolve through the interconversion of molecular complexes,clusters,and nanoparticles.By bridging homogeneous and heterogeneous catalysis,this paradigm challenges conventional mechanistic views and initiates discussions for a universal theory of catalysis.The findings highlight the importance of adaptive catalyst behavior,leading to more efficient,selective,and robust catalytic systems.The impact of the“cocktail”-type approach extends beyond fundamental research,offering practical applications in industrial catalysis,green chemistry,and synthetic methodologies.By embracing catalytic dynamics,new opportunities arise for designing next-generation catalysts that are both versatile and highly effective in diverse transformations.展开更多
To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)...To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)and a 1,5‑cyclooctadiene(cod)molecule:[Ir(cod)(κ^(3)‑CN^(im)P)]Cl(1⁃Cl),[Ir(cod)(κ^(3)‑CN^(im)P)]PF6(1⁃PF_(6)),and[Ir(cod)(κ^(3)‑CNHP)]Cl(2).The^(1)H NMR spectra,^(31)P NMR spectra,and high‑resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)‑CNP complexes.Furthermore,single‑crystal X‑ray diffraction analysis confirms the coordination geometry of 1⁃PF_(6).The strong Ir—C(NHC)bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strongσ‑donating ability,which helps stabilize the active metal species during CO_(2)hydrogenation.As a result,the Ir(Ⅰ)‑CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO_(2)to formate,reaching a turnover number(TON)of 1.16×10^(6)after 150 h at a high temperature of 170℃,which was a relatively high value among all the Ir complexes.CCDC:2384071,1⁃PF_(6).展开更多
Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene s...Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.展开更多
Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthy...Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthyl position(OCOMe,OCOPh,OCOAdamantyl and OCOPhCl).The catalysts exhibited high activity(S/C=4000,TON=3286)with good to excellent selectivity towards dialdehydes.Remarkably,the Rh(I)complex bearing the ligands with chlorophenyl ester substituents led to 99.9%conversion and 98.7%selectivity for dialdehydes under relatively mild conditions(6 MPa,120°C).展开更多
Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese.Herein,we describe the hydrogenation of quinoli...Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese.Herein,we describe the hydrogenation of quinolines and imines catalyzed by simple manganese carbonyls,Mn2(CO)10 or MnBr(CO)5,thus eliminating the prerequisite pincer-type or bidentate ligands.展开更多
We report the catalytic properties of ultra-small β-FeOOH nanorods in ozonation of4-chlorophenol(4-CP). XRD, TEM, EDS, SAED, FTIR and BET were used to characterize the prepared material. Interaction between O3 and ...We report the catalytic properties of ultra-small β-FeOOH nanorods in ozonation of4-chlorophenol(4-CP). XRD, TEM, EDS, SAED, FTIR and BET were used to characterize the prepared material. Interaction between O3 and β-FeOOH was evident from the FTIR spectra.The removal efficiency of 4-CP was significantly enhanced in the presence of β-FeOOH compared to ozone alone. Removal efficiency of 99% and 67% was achieved after 40 min in the presence of combined ozone and catalyst and ozone only, respectively. Increasing catalyst load increased COD removal efficiency. Maximum COD removal of 97% was achieved using a catalyst load of 0.1 g/100 m L of 4-CP solution. Initial 4-CP concentration was not found to be rate limiting below 2 × 10^-3mol/L. The catalytic properties of the material during ozonation process were found to be pronounced at lower initial p H of 3.5.Two stage first order kinetics was applied to describe the kinetic behavior of the nanorods at low p H. The first stage of catalytic ozonation was attributed to the heterogeneous surface breakdown of O3 by β-FeOOH, while the second stage was attributed to homogeneous catalysis initiated by reductive dissolution of β-FeOOH at low p H.展开更多
The multicomponent condensation of an aryl aldehyde,acetyl chloride,acetonitrile,and enolizable ketone as one-pot synthesis of β-acetamido ketones in high yields was investigated using commercial,non-corrosive,and en...The multicomponent condensation of an aryl aldehyde,acetyl chloride,acetonitrile,and enolizable ketone as one-pot synthesis of β-acetamido ketones in high yields was investigated using commercial,non-corrosive,and environmentally benign Keggin and Wells-Dawson heteropolyacid catalysts.The best catalyst was H5PW10V2O40.The methodology used simple experimental conditions,and the short reaction times and high yields indicate it is a useful strategy for the large scale synthesis of β-acetamido ketones.展开更多
This review covers H-H bond cleavage of dihydrogen(H2)mediated by structurally well-defined rareearth metal(scandium,yttrium and lanthanides)complexes,and their applications in homogenous catalysis,such as catalytic h...This review covers H-H bond cleavage of dihydrogen(H2)mediated by structurally well-defined rareearth metal(scandium,yttrium and lanthanides)complexes,and their applications in homogenous catalysis,such as catalytic hydrogenation of unsaturated organic molecules.Depending on the mechanism of the H-H bond cleavage,this review is organized in two parts:(1)σ-bond metathesis,and(2)non-σ-metathesis H2 activation.The latter is a new trend in this research field and is the emphasis of this review.Converting H2 into inorganic rare-earth polyhydride complexes,albeit their potential applications as hydrogen-storage materiel,is not in the scope of this review.展开更多
Four monodentate P-ligands and their mixtures(six groups of double-ligand systems,four groups of triple-ligand systems and one group of tetra-ligand system)were used with Rh(acac)(CO)2(acac=acetylacetonate)or...Four monodentate P-ligands and their mixtures(six groups of double-ligand systems,four groups of triple-ligand systems and one group of tetra-ligand system)were used with Rh(acac)(CO)2(acac=acetylacetonate)or Rh(acac)CO(PPh3)as the catalyst in the hydroformylation reaction of 1-butene.It was found that different Rh catalysts showed little difference in the catalysis performance.The general order of catalysis performance is doubleligand system 〉 single-ligand system〉triple-ligand system 〉 tetra-ligand system.Some synergistic effect in the double-ligand system was detected which needs a further investigation.展开更多
Ni-Al mixed metal oxides have been successfully prepared by high shear mixer(HSM)and coprecipitation(CP)methods for low temperature CO methanation.In this work,Ni-Al(HSM-CP)catalyst presented small Ni crystallite size...Ni-Al mixed metal oxides have been successfully prepared by high shear mixer(HSM)and coprecipitation(CP)methods for low temperature CO methanation.In this work,Ni-Al(HSM-CP)catalyst presented small Ni crystallite size and high surface area,which all contribute to the methanation reaction at low temperature conditions.The obtained Ni-Al(HSM-CP)sample exhibited a mass of defective oxygen,thereby accelerating the dissociation of CO and ultimately increasing the activity of the catalyst.Ni-Al(HSM-CP)catalyst offered the best activity with CO conversion=100%and CH_(4) selectivity=93%at 300℃,and the CH_(4) selectivity can reach 81.8%at 200℃.In situ Fourier transform infrared spectroscopy and density functional theory show that CHO and COH intermediates with lower activation energy barriers are produced during the reaction,and hydrogen-assisted carbon–oxygen bond scission is more favorable.展开更多
Ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Over the past few decades, transitio...Ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Over the past few decades, transition metal-catalyzed conversion of aldehydes has been found to be a powerful method.With the continuous development in recent years, it has become an efficient and uncomplicated strategy for constructing ketones. There are four major mechanisms for transition metal-catalyzed ketone synthesis from aldehyde:(1) carbonyl-Heck reaction, that is 1,2-insertion of organometal species to aldehydic C=O double bond,(2) direct insertion of transition metal catalysts to aldehydic C-H bond,(3) aldehyde as acyl radical,(4) aldehyde as carbon radical acceptor. This article summarizes related reports on the transformations of aldehydes to generate corresponding ketones under different reaction conditions.展开更多
Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural phot...Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural photosynthesis,an artificial photosynthesis model reaction of photochemical CO_(2) to CO conversion(CO_(2)+2 H^(+)+2e^(-)→CO+H_(2)O)catalyzed by a homogeneous hexanuclear ring cobalt complex{K_(2)[CoO_(3)PCH_(2)N(CH_(2)CO_(2))_(2)]}_(6)(Co6 complex)is developed.Using the[Ru(bpy)_(3)]^(2+)as a photosensitizer and TEOA as a sacrificial electron donor,an optimal turnover frequency of 503.3 h^(‒1) and an apparent quantum efficiency of 0.81%are obtained.The good photocatalytic CO_(2) reduction performance is attributed to the efficient electron transfer between Co6 complex and[Ru(bpy)_(3)]^(2+),which boosts the photogenerated carriers separation of the photosensitizer.It is confirmed by the j‐V curves,light‐assisted UV‐vis curves,steady‐state photoluminescence spectra and real‐time laser flash photolysis experiments.In addition,the proposed catalytic mechanism for CO_(2) reduction reaction catalyzed by the Co6 complex is explored by the potassium thiocyanate poison experiment,Pourbaix diagram and density functional theory calculations.展开更多
The phosphazane derivatives (L1-3) were readily obtained by reaction of different ratios of PCI3 and PhNH2. The L1_3 derivatives were found to be efficient ligands in the palladium-catalyzed Suzuki C-C coupling reac...The phosphazane derivatives (L1-3) were readily obtained by reaction of different ratios of PCI3 and PhNH2. The L1_3 derivatives were found to be efficient ligands in the palladium-catalyzed Suzuki C-C coupling reactions in water. It was determined that with the use of L1-3/Pd(OAc)2 system as a catalyst, aryl halides undergo Suzuki cross-couplings with arylboronic acids to give the desired products in moderate to excellent yields.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.22071222,22171249)the Natural Science Foundation of Henan Province(Nos.232300421363,242300420526)+2 种基金Key Research Projects of Universities in Henan Province(No.23A180010)Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT003)Science and Technology Research and Development Plan Joint Fund of Henan Province(No.242301420006)。
文摘The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time,with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery.Remarkably,the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(C_(4)mim-Fe Cl_(4))demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins.This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts.
文摘In this paper, the stereoselective homogeneous catalysis polymerization of phenylacetylene by using two kinds of catalysts W(CO)_5CH_3I and W(CO)_4I_2 produced from UV laser photolysis of W (CO)_6 in CH_3I, I_2—C_6H_6 and CHI_3—C_6H_6 respectively was studied. The effects of laser energy, laser irradiation time and lifetime of catalyst on the polymerization of phenylacetylene were discussed. The photoproducts of W (CO)_6 in CH_3I, I2—C_6H_6 and CHI_3—C_6I_6 were determined by IR spectra. The structures of polyphenylacetylene obtained by W (CO)_5CH_3I and W (CO)_4I_2 catalysts were characterized by IR spectra and ~1H NMR spectra.
文摘In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly performed by transesterification reaction of vegetable oils with methanol and using a homogeneous or heterogeneous catalyst. This work seeks to compare the results produced in transesterification of wasted cooking oil and chicken fat by homogeneous catalysis with NaOH. Due to in each case triglyceride comes from different raw materials, operation conditions differ slightly, which is more evident in the values used for the temperature. For chicken fat was used temperature variations between 35 ℃ and 55 ℃, varying catalyst in percentages between 0.3% and 0.7% with a molar ratio 6:1 in all cases and a reaction time of I h. Likewise, the conditions used in the tmnsesterification process of waste cooking oil were temperature between 50 ℃ and 60 ℃ with a molar ratio 6/1 and 9/1 for alcohol and oil, and catalyst percentage between 0.5% and 0.7% by weight. The yields obtained were between 78% and 94%, or 83% and 95%, for chicken fat and wasted cooking oil, respectively.
基金supported by the National Science Foundation of China(nos.22071105 and 22031008)the Qinglan Project of Jiangsu Education Department.
文摘Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of catalyst-related species and the instability of catalysts at electrodes remain to be overcome.Herein,we review recent advances in electrochemical homogeneous catalysis,focusing on electrochemical noble-transition-metal catalysis,photoelectrochemical catalysis,and electrochemical enantioselective catalysis.The topics discussed include:(1)how the noblemetal catalystworks in the presence of cathodic hydrogen evolution,(2)how the photocatalyst gets enhanced redox property,and(3)how the enantioselectivity is regulated in a catalytic electrochemical reaction.
基金the National Key R&D Program of China(grant no.2021YFA1500200)the National Natural Science Foundation of China(grant nos.92256303 and 92056108)for financial support.
文摘Asymmetric hydrogenation of all-carbon aromatics is still a long-standing challenge in the area of asymmetric catalysis.To date,asymmetric(transfer)hydrogenation of naphthols and phenols remains unexplored.Here,we describe a new strategy for such asymmetric transformation via a bimetallic cooperative heterogeneous and homogeneous catalysis.By using HCOONa as the hydrogen source,various naphthols and phenols were partially hydrogenated in HFIP catalyzed by commercial Pd/C catalyst to give ketone intermediates.Further adding the second chiral Ru-tethered-TsDPEN catalyst and MeOH realized the asymmetric reduction of the resulting ketones in a one-pot manner,furnishing chiral alcohols with good to excellent enantioselectivity(up to 99%ee).The use of HFIP is crucial for suppressing ketone over-reduction via heterogeneous catalysis.More importantly,tandem asymmetric transfer hydrogenation of naphthols was also achieved by tuning the volume ratio of mixed HFIP/MeOH solvent,affording chiral 1,2,3,4-tetrahyronaphthols with excellent enantioselectivity but relatively low yield and limited substrate scope.
基金supported by the National Key R&D Program of China(2021YFA1501600)National Nature Science Foundation of China(Nos.22107028 and 22103062)+3 种基金Program of Shanghai Outstanding Academic Leaders(No.21XD1421200)Science and Technology Commission of Shanghai Municipality(22JC1403900)Shanghai Pujiang Program(No.22PJ1402800)the Fundamental Research Funds for the Central Universities.
文摘Microfluidics has received extensive attention due to its ability to rapidly prepare a large number of microdroplets with controlled sizes and defined morphologies.In addition to having large surface areas and controllable confinement environments,these prepared microdroplets can be used as analytical detection devices to screen and optimize various kinetic parameters.This review summarizes recent advances in the microfluidic control of droplet-based catalytic reactions and discusses the role of these droplets in both homogeneous and heterogeneous catalyzes and in the catalysis of macromolecular biological enzymes in water-in-oil and oil-in-oil environments.Additionally,the existing problems and future development directions of droplets in catalysis are highlighted to promote the development of catalytic reactions in droplet media and provide guidance for the high-throughput screening of catalysts and the directed evolution of biological enzymes.
基金support by the Ministry of Science and Higher Education(075-15-2024-531)。
文摘Catalysis is a cornerstone of modern chemistry,enabling the development of sustainable processes and the production of essential chemicals.However,a fundamental challenge in catalysis lies in understanding the nature of the catalytic species and active centers,particularly the key mechanistic understanding of homogeneous and heterogeneous systems.This review describes the concept of“cocktail”-type catalysis,demonstrating that catalytic active species are not static but evolve through the interconversion of molecular complexes,clusters,and nanoparticles.By bridging homogeneous and heterogeneous catalysis,this paradigm challenges conventional mechanistic views and initiates discussions for a universal theory of catalysis.The findings highlight the importance of adaptive catalyst behavior,leading to more efficient,selective,and robust catalytic systems.The impact of the“cocktail”-type approach extends beyond fundamental research,offering practical applications in industrial catalysis,green chemistry,and synthetic methodologies.By embracing catalytic dynamics,new opportunities arise for designing next-generation catalysts that are both versatile and highly effective in diverse transformations.
文摘To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)and a 1,5‑cyclooctadiene(cod)molecule:[Ir(cod)(κ^(3)‑CN^(im)P)]Cl(1⁃Cl),[Ir(cod)(κ^(3)‑CN^(im)P)]PF6(1⁃PF_(6)),and[Ir(cod)(κ^(3)‑CNHP)]Cl(2).The^(1)H NMR spectra,^(31)P NMR spectra,and high‑resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)‑CNP complexes.Furthermore,single‑crystal X‑ray diffraction analysis confirms the coordination geometry of 1⁃PF_(6).The strong Ir—C(NHC)bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strongσ‑donating ability,which helps stabilize the active metal species during CO_(2)hydrogenation.As a result,the Ir(Ⅰ)‑CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO_(2)to formate,reaching a turnover number(TON)of 1.16×10^(6)after 150 h at a high temperature of 170℃,which was a relatively high value among all the Ir complexes.CCDC:2384071,1⁃PF_(6).
基金supported by the National Natural Science Foundation of China (21173089 and 21373093)the Fundamental Research Funds for the Central Universities of China (2014ZZGH019)the Cooperative Innovation Center of Hubei Province
文摘Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.
文摘Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthyl position(OCOMe,OCOPh,OCOAdamantyl and OCOPhCl).The catalysts exhibited high activity(S/C=4000,TON=3286)with good to excellent selectivity towards dialdehydes.Remarkably,the Rh(I)complex bearing the ligands with chlorophenyl ester substituents led to 99.9%conversion and 98.7%selectivity for dialdehydes under relatively mild conditions(6 MPa,120°C).
基金the National Natural Science Foundation of China(No.21772202,21831008)Beijing Municipal Science&Technology Commission(No.Z191100007219009)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM201901)。
文摘Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese.Herein,we describe the hydrogenation of quinolines and imines catalyzed by simple manganese carbonyls,Mn2(CO)10 or MnBr(CO)5,thus eliminating the prerequisite pincer-type or bidentate ligands.
基金supported by the National Research Foundation of South Africa (No: 88220)the Cape Peninsula University of Technology (University Research Funding) (URF:2014)
文摘We report the catalytic properties of ultra-small β-FeOOH nanorods in ozonation of4-chlorophenol(4-CP). XRD, TEM, EDS, SAED, FTIR and BET were used to characterize the prepared material. Interaction between O3 and β-FeOOH was evident from the FTIR spectra.The removal efficiency of 4-CP was significantly enhanced in the presence of β-FeOOH compared to ozone alone. Removal efficiency of 99% and 67% was achieved after 40 min in the presence of combined ozone and catalyst and ozone only, respectively. Increasing catalyst load increased COD removal efficiency. Maximum COD removal of 97% was achieved using a catalyst load of 0.1 g/100 m L of 4-CP solution. Initial 4-CP concentration was not found to be rate limiting below 2 × 10^-3mol/L. The catalytic properties of the material during ozonation process were found to be pronounced at lower initial p H of 3.5.Two stage first order kinetics was applied to describe the kinetic behavior of the nanorods at low p H. The first stage of catalytic ozonation was attributed to the heterogeneous surface breakdown of O3 by β-FeOOH, while the second stage was attributed to homogeneous catalysis initiated by reductive dissolution of β-FeOOH at low p H.
基金Partial financial support from the Research Council of Sabzevar Tarbiat Moallem University is greatly appreciated
文摘The multicomponent condensation of an aryl aldehyde,acetyl chloride,acetonitrile,and enolizable ketone as one-pot synthesis of β-acetamido ketones in high yields was investigated using commercial,non-corrosive,and environmentally benign Keggin and Wells-Dawson heteropolyacid catalysts.The best catalyst was H5PW10V2O40.The methodology used simple experimental conditions,and the short reaction times and high yields indicate it is a useful strategy for the large scale synthesis of β-acetamido ketones.
基金Project supported by the National Natural Science Foundation of China(21871204)。
文摘This review covers H-H bond cleavage of dihydrogen(H2)mediated by structurally well-defined rareearth metal(scandium,yttrium and lanthanides)complexes,and their applications in homogenous catalysis,such as catalytic hydrogenation of unsaturated organic molecules.Depending on the mechanism of the H-H bond cleavage,this review is organized in two parts:(1)σ-bond metathesis,and(2)non-σ-metathesis H2 activation.The latter is a new trend in this research field and is the emphasis of this review.Converting H2 into inorganic rare-earth polyhydride complexes,albeit their potential applications as hydrogen-storage materiel,is not in the scope of this review.
基金Supported by the National Natural Science Foundation of China(21306227)the Science Foundation of China University of Petroleum,Beijing(C201604)
文摘Four monodentate P-ligands and their mixtures(six groups of double-ligand systems,four groups of triple-ligand systems and one group of tetra-ligand system)were used with Rh(acac)(CO)2(acac=acetylacetonate)or Rh(acac)CO(PPh3)as the catalyst in the hydroformylation reaction of 1-butene.It was found that different Rh catalysts showed little difference in the catalysis performance.The general order of catalysis performance is doubleligand system 〉 single-ligand system〉triple-ligand system 〉 tetra-ligand system.Some synergistic effect in the double-ligand system was detected which needs a further investigation.
基金This work was supported by National Natural Science Foundation of China(No.22068034)Science and Technology Innovation Talents Program of Bingtuan(No.2019CB025).
文摘Ni-Al mixed metal oxides have been successfully prepared by high shear mixer(HSM)and coprecipitation(CP)methods for low temperature CO methanation.In this work,Ni-Al(HSM-CP)catalyst presented small Ni crystallite size and high surface area,which all contribute to the methanation reaction at low temperature conditions.The obtained Ni-Al(HSM-CP)sample exhibited a mass of defective oxygen,thereby accelerating the dissociation of CO and ultimately increasing the activity of the catalyst.Ni-Al(HSM-CP)catalyst offered the best activity with CO conversion=100%and CH_(4) selectivity=93%at 300℃,and the CH_(4) selectivity can reach 81.8%at 200℃.In situ Fourier transform infrared spectroscopy and density functional theory show that CHO and COH intermediates with lower activation energy barriers are produced during the reaction,and hydrogen-assisted carbon–oxygen bond scission is more favorable.
基金financial support from the National Natural Science Foundation of China (No. 21801206)the Chunhui Program of Ministry of Education of China (No.5180210003)+3 种基金Program for Young Talents of Shaanxi Province (No.5113190023)the Joint Research Funds of Department of Science&Technology of Shannxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-015)the Science,Technology and Innovation Commission of Shenzhen (No. JCYJ20190809160211372)the Ao’xiang Overseas Scholars Program of NPU and the Fundamental Research Funds for the Central Universities。
文摘Ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Over the past few decades, transition metal-catalyzed conversion of aldehydes has been found to be a powerful method.With the continuous development in recent years, it has become an efficient and uncomplicated strategy for constructing ketones. There are four major mechanisms for transition metal-catalyzed ketone synthesis from aldehyde:(1) carbonyl-Heck reaction, that is 1,2-insertion of organometal species to aldehydic C=O double bond,(2) direct insertion of transition metal catalysts to aldehydic C-H bond,(3) aldehyde as acyl radical,(4) aldehyde as carbon radical acceptor. This article summarizes related reports on the transformations of aldehydes to generate corresponding ketones under different reaction conditions.
文摘Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural photosynthesis,an artificial photosynthesis model reaction of photochemical CO_(2) to CO conversion(CO_(2)+2 H^(+)+2e^(-)→CO+H_(2)O)catalyzed by a homogeneous hexanuclear ring cobalt complex{K_(2)[CoO_(3)PCH_(2)N(CH_(2)CO_(2))_(2)]}_(6)(Co6 complex)is developed.Using the[Ru(bpy)_(3)]^(2+)as a photosensitizer and TEOA as a sacrificial electron donor,an optimal turnover frequency of 503.3 h^(‒1) and an apparent quantum efficiency of 0.81%are obtained.The good photocatalytic CO_(2) reduction performance is attributed to the efficient electron transfer between Co6 complex and[Ru(bpy)_(3)]^(2+),which boosts the photogenerated carriers separation of the photosensitizer.It is confirmed by the j‐V curves,light‐assisted UV‐vis curves,steady‐state photoluminescence spectra and real‐time laser flash photolysis experiments.In addition,the proposed catalytic mechanism for CO_(2) reduction reaction catalyzed by the Co6 complex is explored by the potassium thiocyanate poison experiment,Pourbaix diagram and density functional theory calculations.
基金the Research Council of University of Maragheh and Shahid Chamran University for funding of this work
文摘The phosphazane derivatives (L1-3) were readily obtained by reaction of different ratios of PCI3 and PhNH2. The L1_3 derivatives were found to be efficient ligands in the palladium-catalyzed Suzuki C-C coupling reactions in water. It was determined that with the use of L1-3/Pd(OAc)2 system as a catalyst, aryl halides undergo Suzuki cross-couplings with arylboronic acids to give the desired products in moderate to excellent yields.